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Abstract

Procurement contracts are often renegotiated because of changes that are required after their

execution. Using highway paving contracts we show that renegotiation imposes significant

adaptation costs. Reduced form regressions suggest that bidders respond strategically to con-

tractual incompleteness and that adaptation costs are an important determinant of their bids.

A structural empirical model compares adaptation costs to bidder markups and shows that

adaptation costs account for 7.5-14 percent of the winning bid. Markups from private infor-

mation and market power, the focus of much of the auctions literature, are much smaller by

comparison. Implications for government procurement are discussed. JEL classifications: D23,

D82, H57, L14, L22, L74.
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1 Introduction

The benefits of using auctions to procure goods and services are well known and vigorously

advocated. Competitive bidding results in low prices and limits favoritism. Employing

auctions to procure standard goods such as pencils, printers and book-keeping software is

straightforward, yet procuring custom made goods and services to fit a buyer’s unique needs

poses challenges. First, the buyer must spend resources to translate operational needs into

well defined and communicable specifications. Second, needs for adaptations and changes

often result from inadequate designs and specifications, changes in the external environment,

or more generally, the extent to which the initial contract is incomplete.

Incomplete contracts force the buyer and supplier to negotiate adaptations both to the

scope of work and to compensation, which may result in considerable discrepancies between

the winning bid and the final payment. A well known example is the “Big Dig” highway

artery in Boston, for which 12,000 changes to more than 150 contracts led to $1.6 billion in

cost overruns, most of which can be traced back to unsatisfactory design.1 One source of

cost overruns is the additional work that was not anticipated. In addition, adaptation costs

are incurred by disruptions to the normal flow of work that could have been avoided with

adequate planning in advance. Renegotiating the contract also generates adaptation costs

in the form of haggling, dispute resolution and opportunistic behavior.

Despite the prevalence of incomplete contracts, their effect on procurement in general,

and on adaptation costs in particular are ignored almost without exception in both the

theoretical and empirical auction literatures. This paper contributes by offering a first

attempt to measure the economic costs of ex post adaptations that result from incomplete

contracts. We develop a simple framework of bidding for incomplete contracts and apply it

to highway procurement in the state of California. Our analysis suggests that adaptation

costs are large, imposing significant extra costs on public procurement.

Our approach is guided by three important features of highway procurement. First, given

the competitive nature of the highway construction industry (publicly traded firms in our

sample report profit margins of less than 3 percent), bidders must anticipate ex post changes

and try to include any adaptation costs in their bids. Second, highway procurement uses

“unit-price auctions” where contracts are summarized by a list of estimated input quantities

1According to the Boston Globe, “About $1.1 billion of that can be traced back to deficiencies in
the designs, records show: $357 million because contractors found different conditions than appeared
on the designs, and $737 million for labor and materials costs associated with incomplete designs.” See
http://www.boston.com/news/specials/bechtel/part_1/.
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required to do the job. A bidder submits a list of itemized (unit) prices, which multiplied

by estimated quantities result in the bidder’s total bid. The contractor with the lowest total

bid wins the auction. Third, the winning total bid is seldom equal to the final compensation

because ex ante estimated quantities and ex post actual quantities never perfectly agree.

Furthermore, changes in scope may be necessary when some specifications of the project

need to be altered.

We develop a stylized model where contractors form rational expectations about the

ways in which actual quantities will differ from estimated ones, as well as whether changes

in scope will be required. Hence, expected changes in payments and adaptation costs will be

incorporated into the bids ex ante.2 We then apply the empirical framework of our model to

a panel data set of highway contract bids that we have collected from Caltrans (California’s

Department of Transportation). The data includes bidder identities, bids, detailed cost

estimates, and measures of cost advantages. Unlike most studies of procurement, our data

also contains detailed information on how the initial designs were altered, including both

estimated and actual quantities for all work items in the contract, as well as payments to

the contractor from changes in scope.

Our empirical analysis first presents reduced form estimations where the strategy for

identifying adaptation costs is based on our theoretical model. Suppose that the contractors

all expect additional payments due to ex post changes. Controlling for production costs,

if there were no adaptation costs then competition implies that for every extra dollar of

expected profits, each contractor should lower its bid by exactly one dollar. If the regression

is correctly specified, the coefficient on ex post additional payments should therefore be −1.

We find that some coefficients are closer to +1, implying that ex post changes on net

generate more costs than revenue.

A concern with our identification strategy is that complex projects, for which ex post

changes are likely, also have higher production costs. This would confound adaptation costs

with production costs and curtail our results. We address this concern using an instrumental

variables strategy and identify an exogenous shifter of ex post payments that is uncorrelated

with project characteristics. As we explain in section 4.3, we use the identity of the Caltrans

engineer assigned to the project as an instrument for changes to compensation. Individual

engineers have discretion over ex post adjustments, making some engineers easier to work

2This is in line with Haile (1991) who explores timber auctions where forward looking rational bidders
take into account the future possibility of resale to calculate their optimal bid.
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with while others are known to cause problems. Engineers are randomly assigned to manage

several projects and their identities are known to contractors at the time of bidding, allowing

us to identify adaptation costs using engineer assignments.

In order to quantify the magnitude of adaptation costs as a markup over production

costs, we estimate a structural model that builds on our theoretical analysis and decomposes

markups into three components. First, as in any auction model, markups are a function of

private information and local market power. Second, as in Athey and Levin (2001), who

investigate behavior in unit-price timber auctions, we estimate the impact of “unbalanced”

bids. Namely, contractors can increase expected profits by increasing (decreasing) unit

prices on items that are expected to overrun (under-run). Third, we estimate the adaptation

costs from changes to the initial specifications (estimated quantities) to uncover the ex post

costs of misspecified ex ante designs. The structural model estimates are consistent with

the reduced form findings and show that adaptation costs are larger than the other two

mark-up drivers. We conclude our empirical analysis with a conservative bounding strategy

to find upper and lower bounds on the adaptation costs. We continue to find large and

significant estimates of adaptation costs under these two specifications, and conclude that

our estimates suggest that adaptation and changes are a major determinant of bids in this

industry and an important potential source of inefficiency.

While largely ignored in the empirical procurement literature, concerns over the impact

of adaptation costs are prevalent in the construction management literature (See Hinze

(1993), Clough and Sears (1994), and Sweet (1994)). The earliest foundations of transac-

tion costs economics (Williamson (1971)) argue that incomplete contracts imply both needs

for adaptation and potential frictions. This idea has been explored in the procurement liter-

ature, and several studies emphasize the importance of adaptation costs including Crocker

and Reynolds (1993), Bajari and Tadelis (2001) and Chakravarty and MacLeod (2009).

Our paper contributes to this literature because, to the best of our knowledge, there are

no empirical estimates of the dollar value of these costs. We demonstrate that standard

methods for estimating auctions can be modified to yield an estimate of adaptation costs

in procurement auctions.

This paper also contributes to the literature on structural estimation of auctions (See,

e.g., Paarsch (1992), Guerre, Perrigne and Vuong (2000) and Krasnokutskaya (2011).) First,

our estimates imply that adaptation costs, which have until now been largely ignored, seem

to impose more distortions and frictions as compared with market power and unbalanced
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bidding. Second, our results suggest that profit markups in standard bidding models are

often misspecified because they do not account for the discrepancies between initial bids

and final payments, omitting important parts of a contractor’s revenues and costs. This in

turn implies that policies geared towards reducing the amount of contractual incompleteness

may have large benefits by reducing the costs of public procurement.

2 Competitive Bidding for Highway Contracts

Highway construction, as well as other public sector procurement, is often done using unit-

price contracts. (See, e.g., Hinze (1993).) Government engineers first prepare a list of items

that describe the tasks and materials required for the job. In the contracts we study,

items include laying asphalt, installing new sidewalks and striping the highway. For each

work item, engineers provide an estimate of the quantity needed to complete the job. For

example, they might estimate 25,000 tons of asphalt, 10,000 square yards of sidewalk and

50 rumble strips. The itemized list is publicly advertised along with a detailed set of plans

and specifications that describe how the project is to be completed.

An interested contractor will bid per unit prices for each work item on the engineer’s

list. Figure 1 shows an example of the structure of a completed bid, which must be sealed

and submitted prior to a set date. When the bids are opened, the contract is awarded

to the contractor with the lowest estimated total bid, defined as the sum of the estimated

individual line item bids.3

Item Description Estimated Quantity Per Unit Bid Estimated Item Bid

1. asphalt (tons) 25,000 $25.00 $625,000.00

2. sidewalk (square feet) 10,000 $9.00 $90,000.00

3. rumble strips 50 $5.00 $250.00

Total Bid: $715,250.00

Figure 1: Unit Price Contract—An Example.

Actual quantities will almost always be different from estimated quantities. The dif-

ference may be substantial if there are unexpected conditions or work has to be redone or

eliminated. As a result, final payments made to the contractor are almost never equal to

3The lowest bid can be rejected if the bidder is not appropriately bonded or does not have a sufficient
amount of work awarded to disadvantaged business enterprises as subcontractors. Also, bids judged to be
highly unbalanced can be rejected, as discussed further below.
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the original bid, and their determination can be complicated. Caltrans’ Standard Specifica-

tions and its Construction Manual discuss the determination of the final payment. To a

first approximation, there are three primary reasons for modifying the payments away from

the simple sum of actual unit costs.

First, if the difference between estimated and actual quantities is large, or if it is thought

to be due to negligence by one party, both sides will renegotiate an adjustment of compen-

sation.4 Using our example, if the asphalt ran over by 10,000 tons, Caltrans would hesitate

to pay an extra $250,000, and the parties may negotiate an adjustment to lower the total

bill. In our data, adjustments are recorded as a lump sum change, but this may also be a

way for parties to adjust the implied unit price on a particular item.

Second, there may be a change in scope. For instance, the original scope might be to

resurface 2 miles of highway. However, the engineers and contractor might discover that

the subsurface is not stable and that certain sections need to be excavated and have gravel

added, an activity that was not originally described. In most cases, the contractor and

Caltrans will negotiate a change order that amends the scope of the contract as well as

the final payment. If negotiations break down, this may lead to arbitration or a lawsuit.

Payments from changes will appear in two ways. One is that changes in the actual ex post

quantities of pre-specified items will be compensated for through the unit prices. Another

is by extra payments may to reflect the use of unanticipated materials or other adjustment

costs, and they are recorded as extra work in our data.

Finally, the payment may be altered because of deductions. If work is not completed on

time or if it fails to meet specifications, Caltrans may deduct liquidated damages. Such de-

ductions are often a source of disputes between Caltrans and the contractor. The contractor

may argue that the source of the delay is poor planning or inadequate specifications pro-

vided by Caltrans, while Caltrans might argue that the contractor’s negligence is the source

of the problem. The final deductions imposed may be the outcome of heated negotiations

or even lawsuits and arbitrations between contractors and Caltrans.

It is widely believed in the industry that some contractors attempt to strategically

manipulate their bids in anticipation of changes to the payment. Contractors read the

plans and specifications to forecast the likelihood and magnitude of changes to the contract.

For instance, consider the example of Figure 1, in which the total bid is $715,250. Suppose

4 In the particular case of highway construstion procured by Caltrans, this type of adjustment is called
for if the actual quantity of an item varies from the engineer’s estimate by 25 percent or more.
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that after reading the plans and specifications, the contractor expects asphalt to overrun by

5,000 tons and sidewalk to under-run by 3,000 square feet. If he changes his bid on sidewalk

to $5.00 and his bid on asphalt to $26.60 then his total bid will be unchanged. However,

this will increase the contractors’ expected total payment to $833,750.00 (266× 30 000 +

5 × 7000 + 5 × 50) compared to $813,750.00 when bids of $25.00 and $9.00 are entered.

This increases his total payment without increasing his total bid, fixing his probability of

winning. A bid is referred to as unbalanced if it has unusually high unit prices on some items

(expected to overrun) and unusually low unit prices on others (expected to under-run).

Athey and Levin (2001) note that the optimal strategy for a risk neutral contractor is

to submit a bid that has zero unit prices for some items that are overestimated, and put all

the actual costs on items that are underestimated. In the data, however, while zero unit

price bids have been observed, they are very uncommon. Athey and Levin suggest that

one reason for this is risk aversion. After speaking with industry participants and reading

industry sources we believe that for construction contracts other considerations are more

important. In particular, Caltrans is not required to accept the low bid if it is deemed

to be irregular (see Sweet (1994) for an in depth discussion of irregular bids). A highly

unbalanced bid is a sufficient condition for a bid to be deemed irregular. As a result, a bid

with a zero unit price is very likely, if not certain, to be rejected.5

Also, the Standard Specifications and the Construction Manual indicate that unit prices

on items that overrun by more than 25 percent are open to renegotiation. In these ne-

gotiations, Caltrans engineers will attempt to estimate a fair market value for a particular

unit price based on bids submitted in previous auctions and other data sources. Caltrans

may also insist on renegotiating unit prices even when the overrun is less than 25 percent

if the unit prices differ markedly from estimates. This suggests that there are additional

limitations on the benefits of submitting a highly unbalanced bid.

3 Bidding for Incompletely Specified Contracts

In this section we use the factual descriptions above to develop a simple variant of a standard

private values auction model that will be the basis for our empirical models.

5Using blue book prices and previous bids, Caltrans is able to check whether bids for certain work items
are unusually high or low. In our data, 3 percent of the contracts are not awarded to the low bidder, and
according to industry sources the mostly likely reason is unbalanced bids.
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3.1 Basic Setup

A project is characterized by tasks,  = 1   and a vector of estimated quantities, q =

(1  

 ) for each task, and is communicated by the buyer to   1 commonly known

bidders. The actual ex post quantities that will be needed to complete the task is given by

q = (1   

 ) and is independent of the bidder who is selected to perform the work.

Since we focus on ex post adaptation costs and not ex ante private information rents,

we assume an extreme form of asymmetric information between the buyer and the bidders.

We assume that each bidder has perfect foresight about the actual quantities q while the

buyer (Caltrans) is unaware of q and only considers q. Perfect foresight can naively be

interpreted as the contractors knowing the actual q By assuming that contractors are risk

neutral, a more convincingly interpretation is that contractors do not have exact information

about q, but instead have symmetric uncertainty about the actual quantities, resulting in

common rational expectations over actual quantities. This interpretation is useful for the

empirical model because it generates a source of noise that is not specific to the contractor’s

information or the observable project characteristics.

Despite having symmetric information about q bidders differ in their private informa-

tion about their own costs of production. Let  denote bidder ’s per unit cost to complete

task  and let c = (1  

 ) ∈ R


+. The total cost to  for installing the vector of quantities

q will be c ·q, the vector product of the costs and the actual quantities. The costs (type)

of contractor  are drawn from a well behaved joint density (c
) with support on a com-

pact subset of R
+. The distributions are common knowledge, but only contractor  knows

c Also costs are independently distributed conditional on publicly observed information.6

Hence, bidders have symmetric rational expectations about what needs to be done but they

have asymmetric private information about the costs of production.

Bidder  submits a unit price vector b = (1  

 ) where 


 is his unit bid on item

 The score of bidder  as his total bid  = b · q, and  wins the auction if and only if

   for all  6= . Hence, bidders participate in a simple linear scoring rule auction where

each bid vector is transformed into a score, the estimated price.

Bidder ’s total cost of producing actual quantities q, which we refer to as his type, is

denoted by  ≡ c · q. Let (b) be the gross revenue that bidder  expects to receive if
6Private values is the common assumption for this industry (e.g., Porter and Zona (1993), Krasnokutskaya

(2011)). Common values with multiple units is intractable and is beyond the scope of this paper.
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he wins with a bid of b. His expected profit is given by,

(b
 ) =

¡
(b)− 

¢ ¡
Pr
©
   for all  6= 

ª¢


3.2 Revenues and adaptation costs

If the only source of revenue was determined by unit prices and actual quantities then

revenues would equal b · q. As discussed earlier, however, gross revenue is affected by

adjustments (), extra work (), and deductions (). As with actual quantities, we

assume that these three components are independent of which bidder wins the contract,

and that bidders have no control over them.

Because contractors are risk neutral and have symmetric rational expectations about

adjustment costs, we introduce each of these three components as expected values, and

include them additively into the bidders’ profit function. In the absence of adaptation

costs, the revenues to the winning bidder  are equal to

(b) =
X

=1



 ++ +

Any payments captured by  + + are just a transfer of funds from the buyer to the

contractor. However, in the presence of adaptation costs every dollar that is transferred has

less than its full impact on profits.

As discussed earlier, there are two kinds of adaptation costs. The first are direct adap-

tation costs due to disruption of the originally planned work. Changes can disrupt the

efficient rhythm of work, and it is not unusual for changes to cut in half the amount of

asphalt laid by a contractor in a day. The project may take twice as long to complete

and perhaps double the labor and capital costs.7 A second source of adaptation costs are

indirect adaptation costs due to resources devoted to contract renegotiation and dispute

7An example witnessed by one of the authors occurred while overlaying a concrete highway with asphalt
where innumerable cracks had been patched with a dark, black “latex joint sealer”. As paving began, the
latex came in contact with hot asphalt, and the heated joint sealer would often explode through the freshly
laid mat of asphalt. As a result, the latex joint sealer had to be removed from thousands of cracks by
laborers using mostly hand tools before state engineers would allow the contractor to overlay the existing
concrete road. This greatly slowed down the rate at which paving could occur, causing trucks to frequently
stand in line for an hour before they could dump their asphalt into the paver. The contractor and the state
engineers disagreed vehemently about the additional expense caused by the need to remove the crack sealer.
Compensation for this change had to be renegotiated at length.

9

Page 12 of 52



resolution.8 Each side may try to blame the other for any needed changes, and they may

disagree over the best way to change the plans and specifications. Disputes over changes

may generate a breakdown in cooperation on the project site and possibly lawsuits.9

In reality, the contractual incompleteness that leads to adjustments, extra work and

deductions will be positively correlated with the direct costs from disrupting the normal

flow of work and the indirect costs of renegotiation. We assume that these extra costs

are proportional to the size of adjustments, extra work and deductions. For example, the

imposed adaptation cost from extra work  is given by .

It is useful to distinguish between positive and negative ex post adjustments to revenues.

By definition, any extra work adds compensation to the contractor while any deduction re-

duces the contractor’s compensation. This implies that   0 and   0. The adjustments

, however, can be positive or negative. We separate these so that positive (negative) ad-

justments are labeled +  0 (−  0). For positive ex post income, adaptation costs

cause surplus to be dissipated while for negative ex post income, adaptation costs cause the

contractor to suffer a loss above and beyond the actual loss imposed by the adjustments

or deductions. The (positive) coefficients  will measure these extra losses. Thus, we can

write down the total ex post costs of adaptation as follows,

 = ++ − −− +  − 

and the total revenue as

(b) =
X

=1



 ++ + −

No adaptation costs imply the null hypothesis that  = 0. As a first step, this spec-

ification is useful because the lack of adaptation costs will be revealed by the data if the

estimated coefficients are zero. If they are not, however, then this will indicate the presence

of adaptation costs, the exact form of which can then be measured with more scrutiny. (In

our empirical analysis the simple linear specification seems to best fit the data.)

To complete the specification of profits, we add a component that captures the loss from

submitting irregular bids that are highly skewed. Given our risk neutrality assumption, if
8Estimates place the value of change orders at $13 to $26 billion per year, but researchers have noted

that with the additional costs related to filing claims and legal disputes, the total cost of changes could reach
$50 billion annually (see Hanna and Gunduz (2004)).

9Another indirect source of adaptation costs are other extra resources spent due to changes. Jobs that
are scheduled to start after the completion of the current job will incur higher costs due to overtime of
employees or the hiring of a larger workforce to make up for the extra work.
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a bidder observes a difference between q and q then his incentive is to bid zero on items

that are over-estimated and a high price on items that are under-estimated. As discussed

in Section 2, however, contractors who submit bids that are too skewed risk having their

bids rejected. Hence, skewing bids implies an expected cost on the bidders.

We impose a reduced form penalty that is increasing in the skewness of the bid. Clearly,

the degree of skewness will depend on what “reasonable prices” would be. In practice,

Caltrans engineers collect information from past bids and market prices to create an estimate

 for the unit cost of contract item . Thus, given a vector of prices b, a natural measure

of skewness would be the distance from the “Blue Book” prices b = (1   ).

Let  (b|b) denote the continuously differentiable penalty function of skewing bids

satisfying the following assumptions: First,  (b|b) = 0 (no penalty from submitting a

bid that matches Blue Book prices). Second,  (b|b)


¯̄
¯
=

= 0 (when the bids match

the engineer’s estimates, the first order costs of skewing are zero). These two assumptions

seem natural given the practices of Caltrans. Third,  (b|b) is strictly convex, and finally,

lim→0
 (b|b)



¯̄
¯ = ∞. These last two assumptions guarantee an interior solution to the

bidders’ optimization problem in the choice of b. For convenience we henceforth drop

b and use  (b) This completes the specification of revenues as,

(b) =
X

=1



 ++ + − −  (b) (1)

3.3 Equilibrium Bidding Behavior

We use Bayesian Nash Equilibrium of the static first-price sealed-bid auction as our solu-

tion concept. The game is a scoring auction with independent private values in the spirit of

Che (1993) and is a special case of the multidimensional-type model of Asker and Cantil-

lon (2008) where the project is fixed, with the buyer’s objective being trivially fixed given

the fixed scoring rule. Similar to Che’s “productive potential” and Asker and Cantillon’s

“pseudotype,” our equilibrium behavior will be determined as if our bidders have a uni-

dimensional type. The reason is that given the scoring rule, the choice of  = b · q is

separable from the optimal choice of the actual bid vector b.10 As a result, the Bayesian

game will have a unique pure strategy monotonic equilibrium.11

10That is, given the score (price) , each bidder has an optimal choice of bids conditional on winning,
(), and given this optimal price policy, there is an optimal score (

) that is unidimensional.
11This follows from the results of Lebrun (2006).
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It is therefore useful to decompose bidder ’s problem into two steps. First, given a score

, we solve for the optimal bid conditional on winning the auction. This will result in the

bidding function b() (or ()  = 1  ) Then, given b() we solve for the optimal

score  that the bidder would like to submit.

The first problem of choosing the optimal bid function given a score  is given by

max
b()

P
=1 




 −  ++ + − −  (b)

s.t.
P

=1 



 = 

(2)

Solving (2) yields  + 1 first order conditions (FOCs), the first  being,

 −
 (b)


−  = 0 for all  = 1   (3)

and the last being the constraint.

After (implicitly) solving for b() we can complete the bidder’s optimization problem

of choosing his optimal score . Let (·) be the cumulative distribution function of

contractor ’s score,   The probability that contractor  with a score of  bids more than

contractor  is (
). Thus, the bidder’s expected profit function is,

(
 ) =

£
(b())− 

¤
×

⎡

⎣
Y

 6=

¡
1−(

)
¢
⎤

⎦ 

Substituting revenues with (1) and recalling that  =
P

=1 



  the contractor’s FOC is:

X

=1

£
(

)− 
¤
=

X

=1

(
)




−

 (b)





X

 6=

(
)

1− ()

−− − + +  (b) (4)

From our assumptions on the densities of types and on the penalty function  (·), (·)

is differentiable with density (·), and the FOCs of the two stages of optimization are

necessary and sufficient for describing optimal bidder behavior.

A Bayesian Nash Equilibrium is a collection of bid functions, b(·) and scores  that

simultaneously satisfy the system (3) and (4) for all bidders  ∈ {1 }. As stated above,

there is a unique monotonic equilibrium in pure strategies, and we will therefore use (4) as

the basis for our empirical analysis.

The FOC (4) provides some insight into a firm’s optimal bidding strategy, and relates to

the established literature of bidding without adaptation costs and changes. When q = q

and when there are no ex post changes, the FOC (4) reduces to
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 − c · q =

⎛

⎝
X

 6=

(
)

1−()

⎞

⎠
−1

 (5)

which is the FOC for standard first price, private value asymmetric auction models. Our

model is therefore a variant of the standard models of bidding for procurement contracts.

(See, e.g., Guerre, Perrigne and Vuong (2000) and Athey and Haile (2006)). That is, the

markups reflect the contractors’ cost advantage and information rents as captured in the

right hand side of (5).

The innovation in (4) is the introduction of empirically measurable terms that were

ignored in previous procurement studies, most notably the adaptation costs reflected in .

To see this, suppose that the contractor expects a deduction of $1,000. The first order

condition suggests that the contractor will raise his bid by (1 + ) × 1 000. Hence, the

total costs of the deductions, as borne by the firm, are indirectly borne by Caltrans.

Clearly, this model abstracts away from what are known to be fundamentally hard prob-

lems such as substituting the perfect foresight assumption on changes and actual quantities

with a common values specification in which each bidder has signals of these variables. De-

spite these limitations, however, our first order conditions at a minimum generalize models

previously imposed in both the theoretical and empirical literature, which implicitly impose

the assumption that   = 0 for all  ∈ {+ −}. As we demonstrate shortly, this null

hypothesis is strongly rejected by the data.

4 Data

Our unit of observation is a paving contract procured by Caltrans from 1999 through 2005.12

We index the projects by  = 1   . Many of the variables in the theoretical section

are directly measured in our data, and we use superscript () to index these variables for

project . For instance, () denotes the unit price for item  submitted by bidder  on

project . The sample includes  = 819 projects with a total awarded value of $2.21

billion. There were a total of 3,661 bids submitted by 349 general contractors.

Table 1 lists the top 20 contractors in our data set and their market share.13 Over

12Contract details from 2001 and the first half of 2003 are no longer accessible from Caltrans, so our
sample does not include contracts from these two periods.
13Market size is defined as the value of the winning bids for the projects in our data set (not the final

payments made to the contractors.) We focus on contracts for which asphalt is at least one third of the
project’s monetary value. We exclude contracts that were not awarded to the lowest bidder (which represent
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half of the participating contractors, 193 firms, never won a government asphalt contract

during the period and only 2 firms participated in more than 10 percent of the auctions.

To account for asymmetry in size and experience, we let  be a dummy variable

equal to one if firm  is a “fringe” firm, defined as a firm that won less than 1 percent of

the value of contracts awarded. Table 2 compares bidding by the top and fringe firms.

For each project, we collected information from the publicly available bid summaries

and final payment forms that include the project number, the bidding date, the location

of the job, other information about the nature of the job and bidder identities with their

itemized bids. Projects have an average of 33 items, although one project has 326 items.

For each item, we have the unit prices for all bidders, along with the estimated quantity.

We also obtained the engineer’s estimate of the project’s cost. This measure, provided

to potential bidders before proposals are submitted, is intended to represent the “fair and

reasonable price” the government expects to pay for the work to be performed. This

estimate can be thought of as Σ=1[
()
 ], the dot product of Blue Book prices and the es-

timated quantities for project . Caltrans measures  using the Blue Book prices published

in the Contract Cost Data Book (CCDB), an item-level data summary prepared annually

by Caltrans’ Division of Office Engineer.14 We have merged this information into our data

set. Thus, a unique feature of our data is that we directly measure all the tasks and we have

a cost estimate for every task. Such detailed cost information is rare in procurement studies

and it allows us to incorporate an appealing set of controls in our regression analysis.

From the final payment forms, we collect data on the actual quantities, ()  used for

each item. Additionally, the forms record the adjustments, extra work, and deductions

that contribute to the total price of the project. These correspond to the variables ()+ ,


()
− , () and () introduced in the previous section.

only 3.1 percent of all projects.) We also exclude 31 contracts for which there was only one recorded bidder
and 65 contracts for which there is no itemized record of the final payment or pages missing from record files.
Lastly, during this time period, there were 22 paving contracts that were structured as “A+B” contracts,
where bidders submit a bid on the number of days to completion as well as unit bids on itemized tasks.
These types of contracts only appear later in the sample and are excluded. Table A1 in the online appendix
shows the bidding activities of the top 20 firms.
14See the “Plans, Specifications, and Estimates Guide,” published by the Caltrans’ Division of Office

Engineer for information about the formation of this estimate. Not all items have values in this source. For
items with no CCDB value, we derive an estimate for  using the average of the low bidder’s unit price on
an item over all contracts in a given district and year. This averaging method is consistent with the method
professional estimating companies use to create benchmark prices for the CCDB. This  had an 2 of 0.66
when regressed on the estimates we received from the CCDB. Furthermore, when we regress a constructed
measure of


 

()
 on the engineer’s total estimate from our data, the 2 is 0.985.
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To account for the advantage of geographic proximity (transportation cost) we measure

the distance of firm  from project , denoted as 
()
 . Table 4 summarizes these

calculated measures based on the ranking of bids.15 As expected, contractors who submit

the lowest bids also tend to have the shortest travel distances, reflecting their cost advantage.

A firm’s bidding behavior may be influenced by its production capacity and project

backlog. Firms that are working close to capacity face a higher opportunity cost when

considering an additional job. Following Porter and Zona (1993), we construct a measure

of backlog from the record of winning bids, bidding dates, and project working days. We

assume that work proceeds at a constant pace over the length of the project, and define

the variable 
()
 to be the remaining dollar value of projects won but not yet

completed at the time a new bid is submitted.16 We then define  () as the

maximum backlog experienced for any day during the sample period, and the utilization

rate () as the ratio of backlog to capacity. For those firms that never won a contract,

the backlog, capacity, and utilization rate are all set to 0.17

Firms may take into account their competitors’ positions when devising their own bids.

We therefore include measures of their closest rival’s distance and utilization rate. We define


()
 as the minimum distance to the job site among ’s rival bidders on project .

Likewise, () is the minimum utilization rate among ’s rival bidders on project .

Summary statistics for the projects and the bids are provided in Tables 3 and 4 (as well

as in Tables A2 and A3 in the online appendix.) There is noticeable heterogeneity in the

size of projects awarded: the mean value of the winning bid is $2.7 million with a standard

deviation of $6.9 million. The difference between the first and second lowest bids averages

$181,340, meaning that bidders leave some “money on the table.” On average, the projects

require 108 working days to complete, and several change orders are processed. The final

15The contract often provides the location of the project as the cross streets at which highway construction
begins and ends. Where the information is less precise we use the city’s centroid or a best estimate based on
the post mile markers and highway names included in the contract. We record distance using the address of
each bidder as calculated by Mapquest. When a bidder has multiple office locations we use the one closest
to the job site. For projects with multiple locations we take the average of the distances to each location.
Using Mapquest’s estimated travel time rather than distance produced quantitatively similar results.
16This measure was constructed using the entire set of asphalt concrete contracts, even though a few of

these were excluded from the analysis. Since we lack information from the previous year, the calculated
backlog will underestimate the true activity of firms during the first few months of 1999.
17Bajari and Ye (2003) show that the opportunity cost of capacity enters into the FOCs like a deterministic

cost shifter. This assumption is valid if bidders are indifferent about which of their competitors wins a project
so that there is no incentive to strategically manipulate the capacities of competitors. See Pesendorfer and
Jofre-Bonet (2003) for a dynamic analysis of capacity constrained bidders.
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price paid for the work exceeds the winning bid by an average of $190,376 (5.8 percent

of the estimate). As Table 4 shows, some of this discrepancy can be attributed to over

and under-runs on project items. Large deviations also induce a correction to the item’s

total price, captured by the value of adjustments. In our sample, the mean adjustment is

$142,035. Compensation for extra work negotiated after change orders, as well as deduc-

tions, contribute to the difference, averaging $176 256 and (−$8 615) respectively. These

suggest a substantial degree of incompleteness in the original contracts.

As Athey and Levin (2001) show, contractors can raise profits by skewing their bids up-

wards (downwards) on items that are expected to overrun (under-run). Table 5 examines

bid-skewing by reporting a regression of the unit prices on the percent by which that par-

ticular item overran. The left hand side variable is the unit price divided by an estimate of

the CCDB unit costs.18 The coefficient on percent overrun is 00465, which is statistically

significant at the 5% level. That is, if a contractor expected a 10% overrun on some item, he

would shade his bid up on that item by approximately 05%, a modest amount. When we

allow for heteroskedasticity within an item code by using fixed or random item effects, the

coefficient on percent overrun is similar, although with 1 519 types of items, these effects do

not add much explanatory power to the regression. This evidence suggests that incentives

to skew are not a major determinant of the observed bids.

5 Reduced Form Estimates

5.1 Bid Regressions

We begin our analysis by performing some common reduced form regressions to determine

what best explains the total bids. A typical reduced form approximation to equation (5)

implies that b() · q() should be determined by costs and measures of market power.

We control for firm ’s costs using four terms. First is the engineer’s cost estimate.

A regression of b() · q() on the engineer’s cost estimate, b() · q() yields an 2 of

0.982 and a coefficient equal to 1.039, making the engineer’s cost estimate an excellent cost

control. Second, a firm’s own distance to the project, 
()
 will influence transportation

costs. Third, () will measure firm ’s free capacity. Finally, we allow the bids to differ

by firm size and include an indicator, 
()
 for fringe firms as described above.

18The CCDB only contains estimates for the more common variations of the construction items so some
items are not reported. Therefore, this regression only uses 92 percent of all the item-unit bids submitted.
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A bidder’s markup over costs will also depend on publicly observed information about

its competitors, for which we use three terms as follows. Firm  will have more market power

when () the distance of its closest competing rival to the project, 
()
  is farther,

() when its rivals capacity utilization, () , is higher, and () when the number of

bidders, (), is greater.

The impact of our covariates on the bids will be proportional to the engineer’s cost

estimate
³
b
() · q()

´
. One would expect increasing ’s distance by 10 miles will raise the

bid more on a contract with a $5 million dollar estimate than one with a $500,000 dollar

estimate. It is also natural to expect the variance of the error term to be proportional to³
b
() · q()

´
. The efficiency of our regression estimates would be improved by dividing

our regression through by
³
b
() · q()

´
to control for heteroskedasticity. Therefore, we

propose estimating the following equation:

b() · q()

b
() · q()

= 0 +  +  + 2
()
 + 3

()
 + 4

()
 (6)

+5
()
 + 6

()
 + 7() + 

()


We include project fixed effects () and firm fixed effects (). Project fixed effects control

for information that is publicly observed by all the firms but not by us. Firm fixed effects

control for omitted cost shifters of firms that are persistent across auctions. Regressions

such as (6) are often used. (See, e.g., Porter and Zona (1993)).

Results from estimating (6), and its variants, are displayed in Table 6. Fringe status is

significant and has positive signs as expected; fringe firms bid 3.4 to 4.7% higher than more

established competitors. Distance is positive and significant in all but one specification; a

firm located 94 miles from the project (the sample average) would bid about 1% more than

a firm that is adjacent to the project. Increases in rival’s distance allows a firm to increase

its own bid by 2-3% for every 100 miles. The number of firms in a market has the expected

sign; adding an additional bidder to the job lowers bids by about 1.5%.

The goodness of fit in columns I and II is low. In columns III and IV, we add project

and firm fixed effects. The results suggest that both of these variables add considerably

to goodness of fit, particularly project fixed effects. These effects capture characteristics

such as the condition of the job site, the difficulty of the tasks, and anticipated changes. As

column V shows, substituting project fixed effects with project random-effects has almost

no impact on the results.
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5.2 Accounting for Changes and Adaptation Costs

While regressions such as those in Table 6 are common, equation (4) suggests that they suffer

from two sources of misspecification. First, the dependent variable is the total estimated

bid, b · q instead of the (expected) total payment, b · q Second, the regressions ignore

the anticipated changes to payments due to adjustments, extras and deductions. Based on

equation (4), we re-specify the reduced form regression as follows:

b() · q()

b
() · q()

=  +  + 2
()
 + 3

()
 + 4

()
 (7)

+5
()
 + 6

()
 + 7() + 

()
 

where

 = 1 + 2
()
+ + 3

()
− + 4

() + 5
() +  

The regression in (7) is similar to that in (6). However, the dependent variable is now

consistent with (4). As before, we correct for heteroskedasticity related to project size by

dividing through by an estimate of that size, b
() · q().

Equation (4) implies that the marginal impact of an extra dollar of change identifies the

adaptation costs in our model. Following the logic of (4), our estimates of 2 through 5

offer estimates of the adaptation cost coefficients as follows:19

2 ≡ −(1− +) 4 ≡ −(1− )
3 ≡ −(1 + −) 5 ≡ −(1 + )

The results of these least-square regressions appear in Table 7. As columns I, II and III

demonstrate, including only the cost shifters of the firm and its competitors as covariates

yields results similar to columns II, IV and V in Table 6.20 Project fixed effects absorb a

great deal of variation, consistent with unobserved project-specific heterogeneity. Note that

the regression in Table 7, column II, is almost identical the to regression in Table 6, column

IV, yet the 2 increases slightly when the the dependent variable is unit prices times the

actual quantities, as suggested by (4). This is subtle evidence that ex post information

better explains the observed bids.

19The coefficient on  in (4) is −(1 + ), and because (7) regresses the bid on covariates instead of the
cost, the signs are reversed and 4 = −(1− ). A similar logic applies to the other ex post coefficients.
20The coefficient on () is not always negative, and is never significant. This is caused by 5

contracts with more than 13 bidders, all of which run over by an average of 7% . Excluding them gives the
expected negative sign.
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Next, we include the ex post changes: positive and negative adjustments ( ()

and ()), extra work (()) and deductions (()), all normalized by dividing

through by b
() · q(). The regression results without project-specific effects are shown

in column IV, with project fixed effects in column V, and with project random effects in

column VI.21 The coefficients on ex post changes are similar in all three columns, and most

are highly significant.22

The results provide evidence that adaptations impose significant frictions. For example,

in columns IV-VI of Table 7, the coefficient of about (−18) on negative adjustments suggests

that negotiations over negative adjustments carry with them $08 adaptation costs for every

dollar in adjustments. If bidders anticipate negative adjustments then they tend to raise

their bids not only to recoup the expected loss, but also to recover the adaptation costs

they will expend while haggling over price changes.

With no adaptation costs the coefficients on positive adjustments should equal −1. The

coefficient of about 08 implies that firms actually raise their bids when they expect this

additional ex post compensation because they expect to spend $18 in adaptation costs for

every dollar they obtain in adjustment compensation. This may seem bizarre, but a simple

rent-seeking story can rationalize this result.23

Similarly, the coefficient of 016 on extra work implies that firms expect to spend $116

in costs for every dollar they obtain in adjustment compensation.24 Adaptation costs on

deductions are much smaller and less significant, which may be a result of the low frequency

of deductions in the data.
21 In column V, we estimate the project fixed effects along with the firm-specific controls in a first step,

then regress those fixed effects on measures of ex post changes to the project. We acknowledge that, because
the number of bids per contract is small and not approaching infinity, these fixed effects estimates are not
consistently estimated. We prefer the results using random effects, but include both to show how little the
estimates change under different specifications.
22We also report the impact of changes to individual item quantities on bids. Our model predicts that

this could impact the bids through the skewing penalty. We constructed a measure, () which
is defined as the sum of the dollar overrun on individual items, divided by the project estimate. This dollar
overrun is computed by multiplying the difference in the actual and estimated quantity by the item cost
estimate reported in the Contract Cost Data Book, . Since not all contract items are contained in the
data book, () should be thought of as a partial project overrun due to quantity changes in the
more standard items. The coefficient on () is significant, but very small in magnitude.
23For example, imagine that ex post Caltrans wishes to impose negative adjustments of −$1, which will

be enforced if the firm does not contest. Instead, the firm can pay haggling costs (time, legal fees, etc.) of
$18, after which it will be able to collect a positive adjustment of $1. Since the costs are lower than the
benefit ($2), this will result in an observation of $1 in positive adjustments ex post, but a rational increase
in the ex ante bid of $1.8.
24Our regressions imperfectly control for costs from extra work. In our structural model, presented in

the next section, we attempt to deal with this by bounding the potential bias from omitted costs.
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5.3 Endogenous Ex Post Changes and Omitted Costs

A concern with the analysis above is that ex post changes may be correlated with the error

term because of omitted costs that are observed by the bidders for which we cannot control.

For instance, a project in a more mountainous area will impose higher production costs and

will be more likely to require changes due to the more challenging terrain. If so, projects

with more changes have higher costs not because of adaptation costs but because of higher

production costs in rough terrains. Another plausible story is that very complex projects

impose serious delays and difficulties that increase the labor costs of production. If these

delays are the source of adjustments and deductions then the increased bids may actually

be a consequence of the increased production costs.

Recall that we observe the actual quantities used for each itemized component of the

contract, and have excellent cost data from the CCDB. If delays are accompanied by higher

costs of production, much of this will be captured by higher actual quantities of specified

contract items because these are controlled for by b
() · q(), which in a simple univariate

regression explains 97.4% of the variation in the ex post bid. Hence, it seems safe to

believe that any omitted costs will be negligible. Nonetheless, we proceed to implement an

instrumental variable approach to correct for the possible endogeneity of ex post changes to

compensation by identifying an exogenous variable that affects ex post changes but does not

affect the unobserved project-specific production costs. In particular, we use the identity

of the Caltrans project engineer who supervised the project (i.e., the project manager) to

capture exogenous shocks to ex post changes.

While Caltrans highway contracts have numerous clauses devoted to changes, incomplete

contracts imply that project engineers have considerable discretion over the scope of changes

and deductions, and the process through which these changes are governed. It is well known

in the industry that there is considerable heterogeneity in the propensity of engineers to

make changes to the contract or impose deductions. Like in many fields, some engineers

are naturally adept at dealing with conflict and solving disputes while others are not. Some

engineers are harder to work with because of their propensity to impose deductions and

adjustments, causing disruptions to the efficient flow of work and imposing undesirable

renegotiation costs. Because every project is assigned to an engineer who handles several

projects, the identity of the engineer will shift the distribution of ex post changes to the

contracts he manages, independent of the specific project characteristics.

For the engineer’s identity to be a valid instrument it must be: (i) correlated with the
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endogenous variables (changes), and (ii) uncorrelated with the error term. Condition (i)

is fairly easy to verify. Our 819 contracts were handled by 334 unique engineers. After

dropping the 154 engineers who handle only one contract we are left with 180 engineers,

each managing at least 2 of the remaining 665 contracts.25 First-stage regressions of the

potentially endogenous ex post changes on dummy variables for these engineers confirm

instrument strength particularly for positive adjustments to compensation and overruns

on itemized contract elements, but suggest that they may be weak with regard to extra

work and deductions. See the online appendix for F-statistics and further details about

instrument quality.

Condition (ii) is not possible to verify directly since it is an identifying assumption, but

it is very plausible because of the way that contracts are assigned to engineers according to

the following sequence of events.26 The Caltrans engineering staff first draws the plans and

specifications for a given project. The project is then publicly advertised and the plans,

specifications and other bidding documents are made available to bidders. The location of

the project allows bidders to determine the district office from which the engineer will be

assigned. There are a handful of engineers at a given district office and they are matched to

projects based upon their expertise and availability. In most cases the engineer is assigned

early and noted on the project plans for bidders to contact prior to bidding with questions

about certain specifications. After bids are submitted and a winner is chosen, work begins

and changes to the project are made based upon work progress and site conditions.

Identification also requires that our instrument be mean-independent of the unobserved

costs () One might worry that project engineers predisposed to change the contract are

assigned in a nonrandom way to more or less complicated projects. We find, instead, that

the best predictor of the assignment of a project engineers to contracts is which of the

12 district offices the engineer works at: 96% of the engineers work in a single district.

However, district dummies alone do not predict ()+  
()
− () and (). All districts

have, on average, a similar share of projects that experience large changes. The scarce

supply of engineers in any given district, each with a limited capacity to take on projects,

25 In this set, the mean number of contracts per engineer is 3.69 with a standard deviation of 2.04. The
total value of projects managed by each engineer has a mean of $9.94 million and a standard deviation of
$13.6 million (using the engineer’s estimate). Our data consists of only asphalt contracts, while Caltrans
engineers also manage other contracts, hence the small number of contracts per engineer.
26Any variable known at the time of bidding is a valid instrument (Hansen and Singleton (1982)) because

anything known at the time of bidding cannot be correlated with the forecast error of payoff relevant
variables.
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generates exogeneity in how engineers are assigned to projects with many changes.

Another test of random assignment is to regress measures of engineer experience on

ex post changes. We observe how many projects are assigned to a particular engineer,

which we interpret as a proxy for experience or productivity. We regress this variable on


()
+  

()
− () and (). Nonrandom assignment implies that more experienced engineers

are assigned to projects with more changes. However, the 2 in this regression was less

than 0.01 and none of the coefficients on ex-post change variables were significant.

We present the instrumental variable estimates in columns VII, VIII and IX of Table 7.

In column VIII, as in column V, we regress the project level fixed effects on measures of ex

post changes to the project. Notice that the estimated values using our instruments are

similar to those from the OLS estimation in columns IV through VI. The estimated adap-

tation costs for adjustments are very similar in magnitude and significance, while those for

extra work and especially deductions are higher in magnitude. All are statistically signif-

icant in the fixed effects regression, and most are in the other two specifications (columns

VII and IX).

6 Structural Estimation

The reduced form analysis suggests that contractors build sizeable adaptation costs into

their bids in anticipation of ex post changes. However, much of the literature on contracting

has focused on other sources of distortion, primarily rents from private information and

market power, and, more recently, strategically skewed bidding. In order to assess the

relative magnitude of these distortions alongside those coming from adaptation costs, we

require a method for structurally estimating the model discussed in Section 3.

Our estimation approach builds on the two-step nonparametric estimators discussed in

Elyakime, Laffont, Loisel and Vuong (1994) and in Guerre, Perrigne, and Vuong (2000).

In the first step, we estimate the density and CDF of the bid distributions for project ,

denoted by () () and ()
 () respectively. In the second step, we estimate a particular

form of the penalty from skewed bidding and the adjustment cost coefficients, +  −  
and , by using the first order conditions in (4) to form a GMM estimator.

This approach also addresses some potential sources of misspecification in the reduced

form analysis.27 First, we note that since bidders will be uncertain about the magni-

27We acknowledge that our structural analysis may bring about other misspecifications, but our primary
goal is to assess the relative magnitude of sources of distortion.
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tude of ex post changes, the first order conditions should include the expected values of

(), (), () and  () instead of their actual values. The stan-

dard econometric analysis of measurement error suggests that this will bias our reduced

form estimates of adaptation costs. Second, our reduced form regressions imperfectly ap-

proximate the first order conditions. For instance, we attempt to capture market power by

including 
()
 and 

()
 as regressors. However, we can more precisely assess

market power by directly including the probability of winning, as implied by the first order

conditions (e.g. the right-hand side term in (5)).

Finally, we note that the structural model allows us to better flesh out the interpretation

of the error term, which is important for assessing the plausibility of the instruments used for

estimation. We propose instruments that allow for consistent estimation of the adaptation

costs when there are two sources of endogeneity. The first are the unobserved cost shocks

discussed in Section 4.3. The second are the expectational errors, mentioned above.

While the structural model uses different econometric methods, we shall find a great

deal of consistency with our reduced form results.

6.1 Estimating Bid Distributions

Since we wish to include measures of firm-specific distance and other controls for cross

firm heterogeneity, nonparametric approaches would suffer from a curse of dimensionality.28

Hence, we will estimate () () and ()
 () semiparametrically. We first run a regression

similar to those in Table 6:

b
()
 · q()

b
() · q

= 
()0
 + () + 

()
 (8)

where, as before, the dependent variable is the normalized estimated bid and 
()
 includes

the firm’s distance and whether or not it is a fringe firm.29 We also include an auction-

28Specifically, the sample size required in order to achieve the same level of precision in the estimates
increases dramatically as the number of covariates included in the kernel regression increases. See, for
example, Table 4.2 of Silverman (1986), as well as the Handbook of Econometrics chapter by Athey and
Haile (2007) and the references therein.
29As shown later in equation (9) we are assuming that a bidder’s underlying private information about

costs have a multiplicative structure. That is, costs can be written as a product of b
()
· q and a bidder

specific private information shock. It follows from the linearity of expected utility and the definition of
Bayes-Nash equilibrium that if we divided all costs by b

() · q and all bids by the same constant, this
transformed bid function is also an equilibrium. This idea is noted in both Athey and Haile (2007) section
6.1.1 and Haile, Hong and Shum (2003).
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specific random effect, () to control for project-specific characteristics that are observed

by the bidders but not the econometrician.30

Let b denote the estimated value of  and let b() denote the fitted residual. We assume

that the residuals to this regression are iid with distribution N (·) where N indexes the

number of bidders in the auction. That is, consistent with the model, we treat all auctions

with the same number of bidders in the same way, but account for the effect of the number

of bidders on the distribution of bids. The iid assumption would be satisfied if the noise on

total costs had a multiplicative structure, which we describe in detail in the next subsection.

Under these assumptions, for project :


()
 () ≡ Pr

Ã
b
()
 · q()

b
() · q()

≤


b
() · q()

!
= Pr

Ã

()0
 + () + 

()
 ≤



b
() · q()

!

≡ N

Ã


b
() · q()

− 
()0
 − ()

!


That is, the distribution of the residuals, () can be used to derive the distribution of

the observed bids. We estimate N using the distribution of the fitted residuals b() for

all contracts with the same number of bidders, N , as contract . Then we recover an

estimate of ()
 () by substituting in this distribution in place of N  An estimate of


()
 () can be formed using similar logic. We note that both 

()
 () and 

()
 () will be

estimated quite precisely.31 Given the estimates b()
 and b() we construct an estimate for

⎛

⎝
X

 6=

() (b·q)

1− ()
 (b·q)

⎞

⎠
−1

. Note that this term accounts for varying numbers and identities

of bidders across auctions. In particular, for any given auction, let  index the bidders, so
30As Krasnokutskaya (2011) has emphasized, failure to account for this form of unobserved heterogeneity

may lead to a considerable bias in the structural estimates. However, the strategies proposed in the lit-
erature for dealing with such heterogeneity, including Krasnokutskaya’s deconvolution-style estimator and
the parametric approach of Athey, Levin, and Seira (2011), are not straightforward to apply in our more
complicated framework. Instead, our use of random effects requires that the auction-specific effect () is
mean independent of the bidder’s private information, a restriction that is analogous to the independence
requirements of Krasnokutskaya’s more general deconvolution approach. As a robustness check we also es-
timated a version of the model with fixed effects and found little quantitative change in our results. We do
not rely upon these fixed effects results, however, because with a finite number of bidders per contract, we
have an incidental parameters problem and cannot consistently estimate the distribution of residuals.
31Given the large number of bids in our data, we are able to estimate a separate empirical distribution for

contracts where N = 2 (using residuals from 266 bids), N = 3 (552 bids), N = 4 (671 bids), N = 5 (639
bids), N = 6 (444 bids), N = 7 (448 bids), N = 8 (200 bids), N = 9 (180 bids), and N ≥ 10 (261 bids).
This accounts for the total of 3661 bids in our auctions.

24

Page 27 of 52



that if the number or identity/fringe status of bidders across auctions changes, the set of

firms indexed by  will also change.32

6.2 Estimating Adaptation Costs

As demonstrated in Section 5, the engineering cost estimate, b
() · q(), is an excellent

predictor of the bids. Therefore, we assume that firm ’s cost is a variant of the engineer’s

cost estimate with the following multiplicative structure:


()
 = c

()
 · q() ≡ b() · q()(1 + e() ) (9)

That is, actual total costs for firm  are a deviation from the engineer’s cost estimate

represented as a random variable e() times the engineering estimate b
() · q(). The

assumption in (9) is similar to the multiplicative structure used in Krasnokutskaya (2011).

A similar assumption is also implicit in Hendricks, Pinkse and Porter (2003) where the

authors normalize lots by tract size. We assume that e() are iid.

By substituting (9) into the bidder’s first order condition (4), dividing by b
() · q(),

explicitly writing out the various adaptations costs in , and rearranging terms we can
write


()


b
()
· q()

=
1

b
()
· q()



b() · q() −


=1

(
)



()







 6=


()
 (b() · q())

1−
()
 (b() · q())




−1

(10)

+
1

b
()
· q()


(1− +)

()
+ + (1 + −)

()
− + (1− )

() + (1 + )
()


−
1

b
() · q()



 (b())−


=1

(
)


 (b())








 6=


()
 (b() · q())

1−
()
 (b() · q())




−1



To complete our structural model we also include two additional sources of error in

equation (10). The first source of error is that discussed in Section 4.3, the potential

endogeneity of ex-post changes due to unobserved cost shocks. Recall that these omitted

costs are observed by the firms, but not already accounted for in our cost estimate b()·q().

These costs may be correlated with 
()
+  

()
−  () and () since projects with large ex

post changes are likely to be more complicated and more expensive to complete. We will

denote these additional unobserved costs as ()

32Additional details about the structural estimation procedure is provided in an Online Appendix. Note
that very similar results are obtained from using contract fixed effects or random effects in Equation (8), as
well as from including the number of bidders as an additional covariate in the random effects specification.
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The second source of error is an expectational error which results from bidders not

having perfect foresight about ()+  
()
−  () and (). If risk neutral bidders have

rational expectations then the FOC should simply be modified to include 
()
+  

()
− 

(), and (), the expected value of changes, instead of the actual values. In our

data, we do not directly observe bidders’ expectations. We therefore use well known

strategies akin to those applied in Euler Equation estimation in macroeconomics and finance

(described below) to estimate the model.33 We denote the expectational error as () ≡

(1 − +)
³

()
+ −

()
+

´
+ (1 + −)

³

()
− −

()
−

´
+ (1 − )

¡
() −()

¢
+ (1 +

)(
() −()).

Given these two additional sources of error, () and (), we can rewrite (10) as:


()


b
() · q()

−
()

b
() · q()

+
()

b
() · q()

= (11)

1

b
()
· q()



b() · q() −


=1

(
)



()







 6=


()
 (b() · q())

1−
()
 (b() · q())




−1



+
1

b
()
· q()


(1− +)

()
+ + (1 + −)

()
− + (1− )

() + (1 + )
()


−
1

b
() · q()



 (b())−


=1

(
)


 (b())








 6=


()
 (b() · q())

1−
()
 (b() · q())




−1



Equation (11) is identical to (10) except that we have brought over the two additional
sources of error to the left hand side. Taken together, we can define this composite error
e() :

() ( +  −    ) ≡

()


b
()
· q()

−
()

b
()
· q()

+
()

b
()
· q()

Letting () denote the value of the instrument for bidder  in auction  we will use (11)

to form the moment condition below:

( +  −    ) =
1



X



X



e() ( +  −    )(
()
 − 

()
 )

33This strategy is used in the seminal paper by Hansen and Singleton (1982). We only observe the realized
values of our variables and not a bidder’s expectation of those values. This creates a bias similar to an errors
in variables problem in linear regression. The idea in Hansen and Singleton is that information available
to the agent at the time of bidding can be used to construct a valid instrument since the difference between
the realized value of a random variable and its expected value must be orthogonal to current information.
If this were not the case, an agent could improve her estimate of the expected value by conditioning on this
instrument and hence would not be rational.
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As in our reduced form analysis, we use engineer identities as our primary instruments

as they are uncorrelated with the unobserved cost shocks, (). They are also uncorrelated

with the expectational errors, by definition, because the engineer is typically known at the

time bidding occurs. We also include the engineer’s cost estimate as an instrument because

it is a natural shifter of the bidding strategies and thus, is correlated with the right hand side

variables in (11). We index the moment condition by  to emphasize that the asymptotics

of our problem depend on the number of auctions in our sample growing large.
Let b and b denote a first stage estimate of the bid densities and distributions Let 

be a positive semi-definite weight matrix. We use the following GMM estimator:

+ − 


= argmin ( +  −   

 )0 ( +  −   
 )

The optimal weighting matrix can be calculated by using the inverse of the sample vari-

ance of (·) from a first step estimate which uses the identity weighting matrix. Newey

(1994) demonstrates that under suitable regularity conditions this estimator has normal as-

ymptotics despite depending on a nonparametric first stage. Furthermore, the asymptotic

variance surprisingly does not depend on how the nonparametric first stage is conducted,

as long as it is consistent. The first stage estimates of b and b are quite precise given our

regression coefficients.34. Therefore, it is quite unlikely that our first stage bid density and

distribution estimates introduce significant bias into the estimates.

Lastly, we need to specify a particular functional form for the skewing penalty function

 (b)We use a convenient special case of the conditions we imposed on  (b) as follows,35

 (b|b) = 
X

=1

¡
 − 

¢2
¯̄
¯̄


 − 


¯̄
¯̄  (12)

We chose this specification because the penalty increases for bids that are further away

from the engineering estimate, and these get more weight when the actual quantity is

further away from the estimated one. While we could consider a more flexible penalty

function, the number of observations will limit the number of parameters we can include

in this term. This, together with our objective of keeping the structure of the model as

close to the standard literature as possible, is why we introduce this fairly parsimonious

specification.

34Recall from footnote 31 that even when indexing these distributions by the number of bidders, each
estimate is formed using between 180 and 671 individual bids.
35Strictly speaking, this does not guarantee that  (b|b)




=0

is very large, but we still assume that an

interior solution exists. The estimates act as a reasonable reality check.
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6.3 Estimating Markups

Given the estimates
¡
bd+ d−  bc

¢
, we can recover an estimate of the contractors’

implied markups. Using the functional form in (12) we estimate b

, contractor ’s total

cost for installing the actual quantities by evaluating the empirical analogue of (4):


b() − c()


· q() =


()
 − 2



()
 − 

 

()
 −()


()





()







 6=

̂
()
 (b() · q())

1− ̂
()
 (b() · q())




−1

+






()
 − 

2


()
 − 

()



()




−(1−+)
()
+ − (1 +−)

()
− − (1−)() − (1 +)()

Using our estimates of b, b, b,d+ d− c and b it is possible to evaluate the right hand
side of this equation.

6.4 Results

We summarize the structural estimates in Tables 8-11. Table 8 reports the parameter

values from our semiparametric GMM estimator. The adaptation cost estimates are similar

to the reduced form estimates discussed in Section 4. For instance, the last column of

Table 8 implies that every dollar of positive adjustment generates an additional $2.08 of

adaptation costs, while a negative adjustment generates an additional $2.42, though this

later estimate is not statistically significant. Recall that our results control for the quantities

that were actually installed by the contractor, b · q. Moreover, as we described in the

previous section, we have instrumented for the endogeneity of adjustments to account for a

possible bias from remaining omitted cost variables. Therefore, we argue that this estimate

reflects adaptation costs instead of omitted production costs (). It is worth noting that

our reduced form estimates from Table 7 Column IX were smaller, at $1.92 and $0.5 for

positive and negative adjustments respectively.

The other parameter estimates are also similar to the reduced form estimates. A dollar

of extra work generates up to $1.23 in adaptation costs, which almost matches the $1.21

estimated in the reduced form specification. Deductions are estimated to generate $1.49

in adaptation costs for every dollar of penalty assessed; however, the coefficient is not

statistically significant at standard levels. The lack of significance is most likely a result of

the small variation in this type of ex-post change. Deductions only affect 209 of the 819
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contracts (compared to 752 contracts with extra work and 536 contracts with positive or

negative price adjustments), and much of the variance is driven by a single contract with a

particularly large deduction of almost $2.5 million.36

The estimated value of the skewing parameter,  is −114 − 05. Although the

negative sign is inconsistent with the predictions of our theoretical model, this estimate is

not statistically significant at standard levels. It is also extremely small in monetary terms

and has no appreciable impact on profits or overall costs. The result that there are no large

penalties from skewing is quite robust to alternative specifications for the functional form of

the skewing penalty. However, recall from Section 1 that positive and negative adjustments

are essentially due to renegotiating unit prices. As an empirical matter, it may be difficult

to separately identify a quadratic effect of overruns and underruns, as captured in  from

the linear effect captured in + and − .

In Tables 9 and 10, we summarize our estimates of bidders’ markups. Our results

suggest that the industry is quite competitive. The median profit margin is 3.8 percent

for all bids and 12 percent for winning bids. We note that Granite Construction Inc., the

largest bidder in our data, is a publicly traded company and reported a net profit margin of

31 percent in 2005. The construction industry average according to Standard and Poors

is 19 percent. Profit margins based on SEC filings and our conception of profits differ in

many respects. However, the available direct evidence on profit margins suggests that the

construction industry is quite competitive and our results are consistent with this evidence.

As Table 9 demonstrates, markups over direct costs
¡
b − c

¢
·q are considerably higher

than the profit margin. This is because our analysis distinguished between the direct costs

of completing the project without adaptation costs and the added adaptation costs. The

median markup over direct costs,
¡
b − c

¢
· q is $88 051 for all bids and $230 682 for

winning bids. The ratio of the markup over direct costs to the cost estimate for the median

job is 81 percent for all bids and 177 percent for winning bids. Contractors are effectively

extracting high margins on the components of the contract specified at the time of bidding,

in order to cover the costs of adapting to changes in the contract ex post.

In Table 10, we compare the estimates in Table 9 with the estimated markups found using

more standard methods that ignore the ex post changes to quantities and payments. Using

our first stage estimates of ̂(b
 · q) and ̂(b

 · q), we evaluate the empirical analogue
36This contract was assessed $2.38 million in liquidated damages for completing the project 119 days late,

with the other deductions coming from quality and compliance penalties. Dropping this one contract does
not substantially affect the results.
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of equation (5), which is essentially the estimator discussed in Guerre, Perrigne and Vuong

(2000). Equation (5) is a special case of our model when we assume that q = q and

that that ex post changes can be excluded from the FOCs. Previous empirical structural

models of first price procurement auctions make these assumptions. Using this approach,

the median total markup is $156 691, or 118 percent of the estimate for winning bidders.

These results almost exactly match the median profit margins reported in the last two rows

of Table 9. By comparing the FOCs of the two models, this should not be surprising. The

only difference in the net profit margin under the two approaches comes from the skewing

penalty and the discrepancies between estimated and actual item quantities. Ex post

changes will shift the bid, changing what we refer to as the direct markup, but do not alter

the contractors’ net profit margins. This is an important observation to the extent that it is a

consequence of the “pass through” of costs: the profit margins over total costs are practically

the same in both empirical models. However, our approach distinguishes the direct costs

from the adaptation costs that follow from incompletely specified contracts. Our results

therefore suggest that the standard FOC used in previous empirical studies is misspecified

because it does not account for ex post changes. In our application, failing to account for

contract adaptations leads to estimates with a very different economic interpretation, and

as discussed below, with very different policy implications.

Table 11 reports lower and upper bounds for the total adaptation costs estimated on

each project. These bounds are determined based on the possible margins that firms may

collect on extra work through change orders. Unlike adjustments and deductions, payments

made on extra work are not purely monetary transfers but are negotiated to cover costs of

additional work that cannot be fully accounted for in the itemized quantities listed in the

contract.37 Suppose that the contractor was able to earn a profit margin from renegotiating

these changes. As an upper bound, we can consider a case where contractors earn an

extra $1 in profits for every $1 of changes in scope, . Then the entire 123 would be

attributable to adaptation costs. Our upper bound for the total estimate of adaptations

costs would therefore be calculated as 2091+ + 2418|−|+ 1226 + 1489||. A much

more conservative approach would be to assume firms make zero margin on extra work,

i.e. that every $1 received ex post merely goes towards covering the costs of performance.38

37 Industry sources suggest that a twenty percent profit margin on change orders is most common. It is
helpful to recall that our cost estimate controls for the quantities actually installed and that positive and
negative adjustments are effectively changes to compensation from the unit prices. Hence, these are a pure
transfer and do not involve additional costs that we have not controlled for in our cost estimate.
38This makes the reasonable assumption that firms do not negotiate ex post changes that result in them
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Even in this case, there remains an additional $0.23 that cannot be attributed to production

costs, and we instead attribute to the costs of adaptation. The lower bound is therefore

calculated as 2091++2418|−|+0226+1489||. The median estimate of adaptation

costs is a sizable component of costs by any standard. It has a lower bound of 38 (−01 1)

percent of the engineer’s estimate and an upper bound of 84 (3 131) percent of that

estimate.

7 Implications for Government Procurement

Our analysis offers some lessons for the design of procurement auctions. The first is that

the existing system does a good job of limiting rents and promoting competition. The 

markup is modest, with the median bidder in our sample expecting a profit of 3.8% of the

estimate. More interesting, though, is how firms make their markup. Because adaptation

costs erode more than any positive gains from change orders, firms increase their bids ex

ante to extract high rents on prespecified project items. Among winning bidders the median

value of this direct markup, (b − c) · q is 17.7% of the project’s estimated costs.

Second, both the reduced form and structural estimates imply that adaptation costs

are substantial. The implied adaptation costs range from 55 cents to around two dollars

for every dollar in change. These numbers might be surprising to economists who empha-

size private information and moral hazard as the main sources of inefficiency. However,

the results are consistent with current thinking in Construction and Engineering Project

Management. (See Bartholomew (1998), Clough and Sears (1994), Hinze (1993) and Sweet

(1994). Also see Bajari and Tadelis (2001) for a more complete set of references and dis-

cussion of the literature). One of the central concerns emphasized in this literature are

methods for minimizing the costs of disputes between contractors and buyers. The topic

of controlling contractor margins, by comparison, receives relatively little emphasis in this

literature.

The bounds on adaptation costs that were derived in Section 5.4 suggest that Caltrans

spent on average $362,293 to $538,549 per contract on adaptations costs during, or a total

of $297 million to $441 million on adaptation costs during our five and a half year sample

period. The average ratio of adaptation costs to the winning bid is 0.075 to 0.141. Even half

of our lower bound would be substantial. An implication of competition is that Caltrans, and

hence the taxpayer, is ultimately responsible for expected adaptation costs on the project

losing money.
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as they are directly passed on from the bidders. Of course, we have no way of estimating the

direct adaptation costs born by Caltrans in the form of legal fees and other haggling costs,

which probably add significant costs. Since the source of these costs is the incompleteness

of project design and specifications, an obvious policy implication is to consider increasing

the ex ante costs and efforts put into estimating and specifying projects before they are let

out for bidding. Our analysis does not allow us to speculate on the costs and benefits of

adding more engineering efforts ex ante, and it would be impossible to avoid contractual

incompleteness and the implied agency problems altogether. However, since the magnitude

of adaptation costs is sizeable, there is room to consider some experimentation with more

careful and costly design efforts, and to carefully examine the results of any such added

effort in ex ante engineering.

In related work, Bajari, McMillan and Tadelis (2009) study how private sector, non-

residential construction contracts are awarded in Northern California between 1995 and

2000. Unlike the public sector, private sector buyers can easily use mechanisms other than

competitive bidding to select a contractor. They find that open competitive bidding is

only used in 18 percent of the contracts and that 44 percent of the contracts are negotiated.

Also, negotiated contracts are more commonly used for projects that appear to be the most

complex for which ex post changes in plans and specifications are likely.

A perceived advantage of negotiated contracts is that they allow the architect, buyer

and contractor to discuss the project plans so that the contractor can point out pitfalls and

suggest modifications to the project design before work begins. Furthermore, negotiated

contracts are often based on cost plus compensation. As discussed in Bajari and Tadelis

(2001), the poor incentives to control costs that cost plus contracts provide are compensated

for by the ease in which renegotiating terms is achieved. When changes occur, the contractor

presents his receipts for the additional expenses and is reimbursed, thus avoiding the often

acrimonious process of negotiating change orders and reducing adaptation costs. The results

of this paper complement these previous papers by confirming that adaptation costs are

high in the construction industry, so that economizing on ex post adaptation costs is an

important potential source of cost savings. This may outweigh the benefits of competitive

bidding in selecting the lowest cost contractor, and providing the contractor with strong

incentives to lower production costs.

In the public sector, the use of negotiated contracts is problematic. Allowing for

greater discretion in contractor selection increases the possibility for favoritism, kick backs
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and political corruption. The competitive bidding system is less prone to corruption since

it allows for free entry by qualified bidders and there is an objective criteria for selecting

the winning bidder. An important policy issue is whether it is possible to construct a

mechanism that balances ex post adaptation costs with the potential for corruption. To

the best of our knowledge, this question has not been explored in the existing theoretical

literature. Our research suggests that developing such a mechanism could dramatically

improve efficiency in public sector procurement.
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Table 1: Identities of Top 20 Firms 
Firm 
ID Firm Name Market 

Share 
Firm 
ID Firm Name Market 

Share 
104 Granite Construction Company 25.1% 23 Baldwin Contracting Co 1.9% 
75 E L Yeager Construction Co 10.6% 410 Brosamer-Granite Joint Venture 1.5% 

135 Kiewit Pacific Co 5.5% 237 Sully Miller Contracting 1.4% 
244 Teichert Construction 3.9% 265 West Coast Bridge Inc 1.2% 
12 All American Asphalt 3.3% 186 Pavex Construction 1.2% 

262 W Jaxon Baker Inc 3.3% 234 Steve Manning Construction 1.1% 
125 J F Shea Co Inc 2.6% 162 Mercer Fraser Company 1.1% 
147 M C M Construction Inc 2.4% 126 J McLoughlin Engineering Co 1.1% 
251 Tullis Inc 2.2% 25 Banshee Construction Co 1.0% 
107 Griffith Company 2.0% 141 Lee's Paving 1.0% 

    TOTAL 73.4% 
There were a total of 347 active bidders for asphalt concrete construction contracts in our sample between 1999 and 
2005.  The firms listed above are the top 20 firms from our sample, ranked according to their market share, i.e. the 
share of total contract dollars awarded. The remaining firms each have less than 1% market share and are designated 
as fringe firms. 

 
 

 
 
 
 
 

Table 2: Comparison Between Fringe Firms and Firms with Over 1% Market Share 
 Fringe Firms Non-Fringe Firms 
Number of Firms 327 20 
Number of Wins 388 431 
Number of Bids Submitted 2269 1392   
Average Wins Per Firm 1.2 21.6 
Average Bid Submitted*  $ 3,244,907 $ 6,175,811   
Average Distance to Job Site (miles) * 99.13 109.64 
Average Capacity* $ 2,250,619 $ 30,099,627 
Average Backlog at Time of Bid* $ 94,322 $ 6,417,988 
* The above averages were calculated by first calculating the average for each bidder, 
then averaging these means over the fringe and non-fringe firms, respectively. 
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Table 3: Summary Statistics 

 Obs Mean Std. Dev. Min Max 
Across  Contracts Under Consideration      
Winning Bid 819 2,697,385 6859444 51,625.5 99,599,234 
Markup: (Winning Bid-Estimate)/Estimate 819 -0.0545 0.1982 -0.6166 1.188 
Normalized Bid: Winning Bid/Estimate 819 0.9455 0.1982 0.3834 2.188 
Second Lowest Bid 819 2,878,726 7273552 60,764.5 106,988,376 
Money on the Table: Second Bid-First Bid 819 181,340.7 474494.5 67.5 7,389,144 
Normalized Money on the Table:  
(Second Bid-First Bid)/Estimate 819 0.0763 0.0758 0.0002 0.7486 
Number of Bidders 819 4.47 2.15 2 19 
Distance of the Winning Bidder 819 82.37 114.50 0.1 1066 
Utilization Rate of the Winning Bidder 819 0.1068 0.2023 0 1.0000 
Distance of the Second Lowest Bidder 819 95.74 119.65 0.1 996 
Utilization Rate of the Second Lowest Bidder 819 0.1144 0.2175 0 1.0000 
Across Bids Submitted      
Normalized Bid 3661 1.044 0.2362 0.3834 3.1051 
Distance to Job Site 3661 94.19 129.90 0.1 2857 
Backlog at Time of Bid 3661 4,656,086 14,274,630 0.00 150,411,535 
Capacity 3661 29,793,789 50,680,540 0.00 150,411,535 
Utilization (Backlog/Capacity) 3661 0.1029 0.2193 0.00 1 
Minimal Distance Among Rivals 3661 38.64 53.55 0.1 618.62 
Minimal Utilization Among Rivals 3661 0.0168 0.0750 0.00 1 
      

 
 
 

Table 4: Importance of Ex-Post Changes 
 Obs Mean Std. Dev. Min Max 
Adjustments 819 142,035 832,908 -195,727 15,450,334 
Adjustments / Estimate 819 0.0210 0.0489 -0.2172 0.3962 
Extra Work 819 176,256 657,249 0 14,697,661 
Extra Work / Estimate 819 0.0608 0.0829 0 0.8455 
Deductions 819 -8,615 94,642 -2,530,053 0 
Deduction / Estimate 819 -0.0021 0.0095 -0.1928 0 
CCDB Overrun = (ActQ-EstQ)*CCDB price 819 -62,204 486982 -9,462,806 1,699,937 
CCDB Overrun / Estimate 819 -0.0222 0.2366 -6.3400 0.2859 
Final Payment-Winning Bid 819 190,376 1,436,883 -24,111,355   21,190,429 
(Final Payment-Winning Bid) / Estimate 819 0.0577 0.1187 -0.6591 0.6530 

The CCDB Overrun is meant to reflect the dollar overrun due to quantities that were misestimated during the 
procurement process.   It is only a partial measure of the quantity-related overrun, since some of the nonstandard 
contract items do not have a corresponding price estimate from the Contract Cost Data Book (CCDB).  The 
engineer’s estimate was used to normalize this and the other measures. 
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Table 5: Skewed Bidding Regressions 

Variable OLS Item Code 
Fixed Effects 

Percent unit overrun 0.0465 (3.61) 0.0535 (3.94) 
Constant 1.7829 (55.99) 1.7826 (56.97) 

   
R2 0.0000 0.0403 

Number of Obs. 109,624 109,624 
The dependent variable is the unit price bid on each contract item, normalized by the Contract 
Cost Data Book (CCDB) value.  The percent unit overrun is the percent difference between 
the actual and estimated quantities reported for that item.  Because the pricing strategy a 
bidder uses for one item is related to its pricing strategy for all other items within a contract, 
we expect the residuals to be correlated across items for a given bidder and contract.  To 
account for this correlation, standard errors clustered by bidder-contract are used to compute 
t-Statistics, shown in parentheses. 

 
 
 

Table 6: Standard Bid Function Regressions 
Variable I. II. III. IV. V. 
DISTi,t 0.0067 

(2.13) 
0.0093 
(2.76) 

0.0034 
(1.04) 

0.0076 
(3.38) 

0.0091 
(3.94) 

RDISTi,t 0.0332 
(3.77) 

0.0217 
(2.44) 

0.0232 
(2.70) 

-0.0054 
(-0.61) 

0.0047 
(0.58) 

UTILi,t 
 

0.0149 
(0.80) 

0.0429 
(2.50) 

0.0126 
(0.81) 

0.0074 
(0.50) 

RUTILi,t 
 

-0.1377 
(-2.66) 

-0.1299 
(-2.14) 

0.0334 
(0.71) 

-0.0332 
(-0.77) 

FRINGEi 
 

0.0483 
(5.76)  

0.0379 
(7.27) 

0.0403 
(7.88) 

Number of Bidders 
 

-0.0150 
(-10.30) 

-0.0171 
(-10.33)  

-0.0160 
(-5.45) 

Constant 1.0253 
(187.95) 

1.0795 
(92.52) 

1.1240 
(110.34) 

1.0140 
(165.79) 

1.0966 
(61.48) 

Fixed/Random Effects No No Firm FE Project FE Project RE 
      
R2 0.008 0.035 0.216 0. 733 0.035 
Number of Obs. 3661 3661 3661 3661 3661 

The dependent variable is the total bid divided by the engineer’s estimate, where the total bid is the dot 
product of the estimated quantities and unit prices. Distances are measured in 100 miles. Cluster-robust 
standard errors are used to compute t-Statistics, shown in parentheses. 
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Table 7: Bid Function Regressions Using Actual Quantities Instead of Estimates 
Variable I. II. III. IV. V. VI. VII. VIII. IX. 
DISTi 0.0227 0.0089 0.0123 0.0221 0.0089 0.0123 0.0217 0.0089 0.0119 

(5.91) (3.59) (4.96) (5.94) (3.61) (4.98) (5.85) (3.61) (5.32) 
RDISTi 0.0347 -0.0015 0.0128 0.0353 -0.0013 0.0131 0.0347 -0.0013 0.0116 

(3.30) (-0.17) (1.78) (3.41) (-0.15) (1.83) (3.24) (-0.15) (1.57) 
UTILi 0.0401 0.018 0.0200       

(1.85) (1.02) (1.20)       
RUTILi 0.0972 0.0364 0.0446       

(1.50) (0.80) (1.12)       
FRINGEi 0.0020 0.0355 0.0308 -0.00004 0.034 0.0293 0.0001 0.034 0.0297 

(0.21) (6.34) (5.57) (-0.00) (6.46) (5.59) (0.02) (6.46) (5.32) 
Number of 

Bidders 

0.0055  -0.0036 0.0058 0.0024 -0.0032 0.0062 0.0030 -0.0026 
(1.05)  (-0.89) (1.11) (0.47) (-0.80) (1.21) (0.58) (-0.73) 

NPosAdj    0.8032 0.8190 0.7712 0.8758 0.9044 0.9194 
   (5.89) (5.85) (6.39) (3.87) (3.82) (4.67) 

NNegAdj    -1.7988 -1.7367 -1.8894 -1.6894 -1.5647 -1.5473 
   (-2.23) (-2.24) (-2.25) (-1.78) (-1.72) (-1.62) 

NEX    0.1644 0.1647 0.1559 0.2234 0.2261 0.2089 
   (1.74) (1.77) (1.79) (1.64) (1.66) (2.49) 

NDED    -1.0231 -1.3268 -0.9580 -1.7460 -2.4838 -2.2187 
   (-1.31) (-1.84) (-1.46) (-0.99) (-1.30) (-1.58) 

NOverrun    0.0057 0.0059 0.0054 0.0065 0.0068 0.0070 
   (5.46) (5.46) (5.76) (3.72) (3.70) (3.94) 

Constant 0.9375 0.9771 0.9908 0.9054 -0.0518 0.9556 0.8967 -0.0628 0.9443 
(32.68) (152.49) (47.67) (31.74) (-1.91) (44.80) (29.73) (-2.17) (44.59) 

Fixed/Random 
Effects 

No Project 
FE 

Project 
RE 

No Project 
FE 

Project 
RE 

No Project 
FE 

Project 
RE 

Instruments None None None None None None Resident 
Engineer 

Resident 
Engineer 

Resident 
Engineer 

R2 0.0254 0.7623 0.0105 0.0738 0.7621 0.0599 0.0712 0.7621 0.0577 
Num. of Obs. 3661 3661 3661 3661 3661 3661 3661 3661 3661 

The dependent variable is the vector product of the unit price bids and the actual quantities, divided by a measure of 
the project size ( bqact ). Cluster-robust standard errors are used to compute t-Statistics, shown in parentheses.  
NOverrun is a measure of the quantity-related overrun on standard contract items (those that have a CCDB unit price 
estimate). This overrun is calculated as the vector product of the CCDB prices (where available) and the difference 
between actual and estimated quantities. 
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Table 8: Structural Estimation 
  I-A I-B II-A II-B 
Implied Marginal Transaction Costs 
Positive Adjustments  (τA+) 4.254 1.968 4.350 2.081 

(4.06) (0.39) (2.14) (0.38) 
Negative Adjustments  (τA+) 0.815 0.944 2.574 2.418 

(53.68) (2.99) (33.58) (2.64) 
Extra Work  (τX) * 1.078 1.079 1.928 1.226 

(2.71) (0.15) (1.47) (0.19) 
Deductions (τD) 6.383 0.352 4.568 1.489 

(77.74) (4.78) (39.96) (3.58) 
          
Skewing Parameter 
Penalty (σ) -4.19E-05 -1.02E-05 -4.66E-05 -1.14E-05 
 (5.91E-05) (8.99E-06) (3.52E-05) (9.70E-06) 

          
Number of Obs 3661 3661 3661 3661 

Weighting Matrix ** Identity Optimal Identity Optimal 

Instruments Used in Second Stage 
GMM 

 Resident 
Engineer, 
Engineer’s 
Estimate 

 Resident 
Engineer, 
Engineer’s 

Estimate, Month 
and District 
Dummies 

       
* These estimates represent an upper bound on transaction costs associated with changes in scope.  They do not 
account for marginal costs associated with performing the extra work, which for a reasonable profit margin of 20 
percent would lower our estimate by $0.80. 
** Consistent GMM estimates were computed using the identity matrix as the weighting matrix. In a second step, 
efficient GMM estimates were computed using the optimal weighting matrix derived from the variance of the 
sample moments in the first step. Standard errors appear in parentheses. 
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Table 9: Markup Decomposition 

 All Bidders Winning Bidders Only 

  
Bottom 

10th 
Percentile 

 
Median 

Top 
10th 

Percentile 

Bottom 
10th 

Percentile 

 
Median 

Top 
10th 

Percentile 
Direct Markup: 
  (bi-ci)qa 

12,087 88,051 835,060 38,938 230,682 1,479,238 

Direct Markup/Estimate 2.9% 8.1% 26.1% 7.5% 17.7% 59.8% 
       
Ex-Post Changes: 
  A+ X +D –TC(A, X,D) 

-375,140 -29,524 -907 -396,952 -34,439 -972 

Ex-Post Changes/Estimate -11.6% -2.9% -0.2% -12.2% -3.1% -0.2% 
       
Skewing Penalty:  
  σ ·∑t [(bi-b)2 |%Overt|] 

-143.52 -0.78 -.00 -61.38 -0.27 0.00 

Skewing Penalty/Estimate -0.0095% -0.0001% 0.0000% -0.0031% 0.0000% 0.0000% 
       
Total Profit: 
   Π 

7,214 44,903 403,496 29,984 159,683 1,108,879 

Total Profit / Estimate 1.5% 3.8% 15.7% 5.1% 12.0% 53.3% 
 

 
 
 
 
 
 

Table 10: Markups Implied by Standard Model Without Transaction Costs or Ex-Post Changes 

 All Bidders Winning Bidders Only 

  
Bottom 

10th 
Percentile 

 
Median 

Top 
10th 

Percentile 

Bottom 
10th 

Percentile 

 
Median 

Top 
10th 

Percentile 
Direct Markup: 
   (bi-ci)qa 

7,141 44,443 405,350 29,628 156,691 1,096,923 

Direct Markup/Estimate 1.6% 3.7% 15.7% 5.0% 11.8% 53.5% 
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Table 11: Adaptation Costs 
Upper Bound 

Percentile Total Adaptation Costs As a Fraction of  
Contract's Estimate 

As a Fraction of  
Contract's Estimated Ex-Post 

Profit 
Bottom 10th $4,581 0.9% 3.3% 

[-3,807 , 6,663] [-0.3% , 1.4%] [-1.1% , 4.9%] 
Median $100,978 8.4% 58.5% 

[41,255 , 147,183] [4.3% , 13.1%] [29.2% , 91.0%] 
Top 10th $1,074,675 31.5% 323.4% 

[680,775 , 1,518,007] [19.2% , 45.7%] [213.9% , 473.6%] 
 

Lower Bound 
Percentile Total Adaptation Costs As a Fraction of  

Contract's Estimate 
As a Fraction of  

Contract's Estimated Ex-Post 
Profit 

Bottom 10th $972 0.2% 0.7% 
[-61,362 , 2,621] [-5.0% , 0.5%] [-39.4% , 2.0%] 

Median $38,385 3.8% 25.1% 
[-532 , 90,467] [-0.1% , 8.1%] [-0.4% , 56.9%] 

Top 10th $656,088 16.6% 173.0% 
[267,711 , 1,049,892] [7.0% , 32.0%] [70.7% , 327.6%] 

The total adaptation cost is calculated as 2.081 (A+) + 2.418|A-| + 1.226 (X) +1.489|D|.  We consider this to be an 
upper bound because it attributes the coefficient on extra work to pure transaction costs, rather than marginal costs 
of production.  This amounts to an assumption of a 100% profit margin on extra work, making it analogous to 
positive adjustments in compensation.  A more conservative approach is presented in the bottom panel.  In the 
extreme, firms may perform extra work at a zero profit margin, meaning each dollar awarded through a change in 
scope just covers the cost of performing that work.  With $1 of marginal costs for every $1 of extra work, that still 
leaves approximately $0.23 to be explained by transaction or adaptation costs.  Therefore we calculate a lower 
bound on adaptation costs as 2.081 (A+) + 2.418|A-| + 0.226 (X) +1.489|D|.   
The 95% confidence intervals, appearing in brackets, were calculated by taking the lower and upper confidence 
bounds of the parameter estimates and using them in the transaction cost equation instead of the point estimates. 
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Table A1: Bidding Activities of Top 20 Firms 

ID No. of 
Wins 

Total Bid for 
Contracts 
Awarded 

Final Payments 
on Contracts 

Awarded 

No. of 
Bids 

Entered 

Participation 
Rate 

Conditional on Bidding for a Contract 

Average Bid Average 
Engineer's 
Estimate 

Average 
Distance 
(Miles) 

104 160 554,232,998 616,115,118  484 59.1% 3,395,548  3,379,604  133.3 
75 15 233,245,265  267,245,145  42 5.1% 10,607,480  10,894,612  81.9 

135 7 121,048,703  102,084,697  54 6.6% 13,769,467  13,414,968  441.0 
244 23 87,147,853  94,787,509  73 8.9% 3,932,621  3,721,600  58.3 

12 34 72,495,433  72,215,257  73 8.9% 2,201,216  2,377,883  31.8 
262 24 72,088,982  76,124,748  101 12.3% 2,806,625  2,830,655  215.4 
125 16 57,970,813  62,164,914  74 9.0% 3,236,709  3,030,180  81.5 
147 1 52,666,668  53,890,666  5 0.6% 19,007,185  19,037,046  86.0 
251 23 48,605,745  51,533,241  38 4.6% 1,990,136  2,126,489  46.3 
107 21 43,852,728  45,655,279  59 7.2% 2,609,335  2,688,572  53.3 

23 17 41,695,376  46,204,955  67 8.2% 3,123,777  2,886,551  67.1 
410 1 33,092,725  36,268,057  1 0.1% 33,092,725  28,181,000  141.0 
237 22 31,916,930  31,053,539  80 9.8% 2,094,049  2,065,371  69.7 
265 4 26,786,493  26,426,965  9 1.1% 7,283,186  7,406,581  234.5 
186 17 26,566,823 27,995,110 53 6.5% 1,621,933 1,630,168  48.2 
234 6 24,883,692  27,841,209  24 2.9% 2,189,430  2,001,743  166.2 
162 17 23,556,856  25,487,495  39 4.8% 1,358,393  1,427,103  61.9 
126 8 23,454,933  23,719,853  46 5.6% 1,597,387  1,633,259  69.7 

25 2 23,118,363  25,627,033  13 1.6% 4,954,998  4,913,823  44.5 
141 13 22,904,644  24,262,589  57 7.0% 2,644,021  2,515,985  61.4 

 
 
 

Table A2: Bid Concentration Among Contracts Awarded to Lowest Bidder 
Number of Bidders 2 3 4 5 6 7 8 9 10 11+ Total 
Contracts in 1999 21 47 36 30 11 8 4 2 3 0 162 
Contracts in 2000 30 45 49 43 30 21 6 12 6 7 249 
Contracts in 2002 13 13 12 24 14 21 5 4 2 2 110 
Contracts in 2003 2 9 6 5 2 1 1 0 0 1 27 
Contracts in 2004 21 32 31 19 9 7 4 2 2 0 127 
Contracts in 2005 46 38 34 7 8 6 5 0 0 0 144 

 
 

Table A3: Project Distribution throughout the Year 
Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
Contracts in 1999 13 11 19 12 18 18 24 20 13 4 8 2 
Contracts in 2000 12 14 23 36 16 26 10 39 24 21 20 8 
Contracts in 2002 4 8 11 19 24 11 7 2 14 3 7 0 
Contracts in 2003 0 0 0 0 0 0 2 8 5 4 2 6 
Contracts in 2004 2 8 15 29 33 6 6 10 7 7 3 1 
Contracts in 2005 4 10 24 26 23 17 5 6 10 10 5 4 
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Table A4: First-Stage Results Testing Instrument Quality 
Endogenous Variable First Stage F-Stat 

Positive Adjustments 23.38 
Negative Adjustments 9.22 
Extra Work 4.79 
Deductions 5.53 
CCDBOverrun 31.96 
 
Number of Observations 

 
3661 

The five categories of ex post changes are each normalized by a measure of project 
size, actqb ⋅ . These suggest that the resident engineer’s identity is only strongly 
correlated with positive adjustments and the dollar overrun on itemized tasks, but 
weakly correlated with extra work and deductions. 

 
 

Table A5: Bid Function Regressions Using Actual Quantities Instead of Estimates 
Variable IV. VII.  V. VIII.  VI. IX.  
DISTi 0.0221 0.0217 0.0220 0.0089 0.0089 0.0089 0.0123 0.0119 0.0121 

(5.94) (5.85) (5.94) (3.61) (3.61) (3.61) (4.98) (5.32) (5.31) 
RDISTi 0.0353 0.0347 0.0355 -0.0013 -0.0013 -0.0013 0.0131 0.0116 0.0123 

(3.41) (3.24) (3.43) (-0.15) (-0.15) (-0.15) (1.83) (1.57) (1.69) 
FRINGEi -0.00004 0.0001 0.0004 0.034 0.034 0.034 0.0293 0.0297 0.0297 

(-0.00) (0.02) (0.04) (6.46) (6.46) (6.46) (5.59) (5.32) (5.32) 
Number of 

Bidders 

0.0058 0.0062 0.0062 0.0024 0.0030 0.0028 -0.0032 -0.0026 -0.0028 
(1.11) (1.21) (1.19) (0.47) (0.58) (0.55) (-0.80) (-0.73) (-0.78) 

NPosAdj 0.8032 0.8758 0.8815 0.8190 0.9044 0.9166 0.7712 0.9194 0.9319 
(5.89) (3.87) (3.92) (5.85) (3.82) (3.89) (6.39) (4.67) (4.76) 

NNegAdj -1.7988 -1.6894 -1.8365 -1.7367 -1.5647 -1.7848 -1.8894 -1.5473 -1.9697 
(-2.23) (-1.78) (-2.25) (-2.24) (-1.72) (-2.27) (-2.25) (-1.62) (-2.87) 

NEX 0.1644 0.2234 0.1644 0.1647 0.2261 0.1647 0.1559 0.2089 0.1558 
(1.74) (1.64) (1.76) (1.77) (1.66) (1.79) (1.79) (2.49) (3.52) 

NDED -1.0231 -1.7460 -0.9932 -1.3268 -2.4838 -1.2893 -0.9580 -2.2187 -0.9337 
(-1.31) (-0.99) (-1.28) (-1.84) (-1.30) (-1.80) (-1.46) (-1.58) (-1.22) 

NOverrun 0.0057 0.0065 0.0066 0.0059 0.0068 0.0069 0.0054 0.0070 0.0071 
(5.46) (3.72) (3.79) (5.46) (3.70) (3.78) (5.76) (3.94) (4.04) 

Constant 0.9054 0.8967 0.9015 -0.0518 -0.0628 -0.0564 0.9556 0.9443 0.9480 
(31.74) (29.73) (31.30) (-1.91) (-2.17) (-2.06) (44.80) (44.59) (46.82) 

Project Effects None None None Fixed Fixed Fixed Random Random Random 
Instruments None Resident 

Engineer 
Resident 
Engineer, 
only for 

NPosAdj, 
NOverrun 

None Resident 
Engineer 

Resident 
Engineer, 
only for 

NPosAdj, 
NOverrun 

None Resident 
Engineer 

Resident 
Engineer, 
only for 

NPosAdj, 
NOverrun 

R2 0.0738 0.0712 0.0732 0.7621 0.7621  0.0599 0.0577 0.0581 
Num. of Obs. 3661 3661 3661 3661 3661 3661 3661 3661 3661 

This table reproduces six of the columns from Table 7 in the body of the paper.  An additional column has been added for each of 
the no/fixed/random effects specifications, showing the estimates when we only instrument for NPosAdj and NOverrun where 
instrument strength is not an issue.  Note the similarity in our estimates across specifications.  As with Table 7, the dependent 
variable for all nine regressions is the vector product of the unit price bids and the actual quantities, divided by a measure of the 
project size ( bqact ⋅ ). Cluster-robust standard errors are used to compute t-Statistics, shown in parentheses.  NOverrun is a 
measure of the quantity-related overrun on standard contract items, calculated as the vector product of the CCDB prices (where 
available) and the difference between actual and estimated quantities. 
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A Details on the Structural Estimation

Our structural approach uses a two-step semiparametric estimator that builds on those dis-

cussed in Elyakime, La↵ont, Loisel, and Vuong (1994) and Guerre, Perrigne, and Vuong

(2000).
1
In the first step, we estimate the density and the CDF of the bid distribution for

project n, denoted by h
(n)
j

and H
(n)
j

respectively. In the second step, we use those estimates

in a GMM estimator based on the first-order conditions in Equation (4). This allows us to

recover the adjustment cost coe�cients, ⌧a+, ⌧a�, ⌧d, and ⌧x, along with a specific form of

the penalty from skewed bidding captured by the parameter �.

Step 1: Estimating Bid Distributions

Because the bidder’s payo↵ function contains expectations of the probability that his

bid is the lowest, the first-order conditions will contain the density and CDF of the bid

distributions. Specifically, we are interested in an estimate for

0

@
X

j 6=i

h
(n)
j

(b
(n)
i

· qe,(n)
)

1�H
(n)
j

(b
(n)
i

· qe,(n))

1

A
�1

(1)

for each contract n and each bidder i. As we note in the paper, we cannot recover fully

nonparametric estimates of these distributions while still controlling for important measures

of firm-specific and auction-specific heterogeneity. Instead we use the following semipara-

metric approach that “homogenizes” the submitted bids from all firms and all contracts,

and uses the homogenized bids to consistently estimate the underlying distribution of firm

valuations.

First, we regress the normalized bid on the firm’s distance and a fringe indicator, allowing

for project-specific random e↵ects:

b
(n)
j

· qe,(n)

b
(n) · qe

= x
(n)
j

0µ+ u
(n)

+ "
(n)
j

where x
(n)
j

includes the bidder’s distance to the job site and an indicator for whether the

bidder is a fringe firm (with less than 1% of the value of contracts awarded). Let "̂
(n)
j

denote

the fitted residual from this regression:

"̂
(n)
j

=
b
(n)
j

· qe,(n)

b
(n) · qe

� x
(n)0
j

µ̂� û
(n)

1
This approach is detailed in the Athey and Haile (2007) chapter of the Handbook of Econometrics, and

similar versions are applied in Krasnokutskaya (2011) and Shneyerov (2006).
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These residuals are assumed to be iid with distribution GN (·), where N indexes the distri-

bution by the number of bidders in contract (n). We can use the empirical distribution of

these residuals to recover an estimate for the distribution of bids, since as we show in the

paper,

H
(n)
j

(b) ⌘ GN

 
b

b
(n) · qe,(n)

� x
(n)0
j

µ� u
(n)

!

Specifically, in order to construct Ĥ
(n)
j

(b
(n)
i

· qe,(n)
), we first compute the empirical CDF of

the residuals, ĜN (·), by pooling all residuals from bids on contracts with the same number of

bidders,N , as in contract (n).
2
Then we evaluate this distribution at

b
(n)
i ·qe,(n)

b
(n)·qe,(n)

�x
(n)0
j

µ̂� û
(n)

to determine the probability that bidder i’s bid of b
(n)
i

· qe,(n)
, normalized, would be less

than his rival bidder j’s, normalized bid. Put simply, we count the fraction of the fitted

residuals that are less than
b
(n)
i ·qe,(n)

b
(n)·qe,(n)

� x
(n)0
j

µ̂ � û
(n)

. This is done for each contract n and

each bidder i, for each of bidder i’s rivals, indexed by j.

Next, in order to recover the empirical density of the bids, Ĥ
(n)
j

(b
(n)
i

· qe,(n)
), we need

an estimate of the empirical density of the residuals, gN (·), where again, N indexes the

density by the number of bidders in contract (n). We use a kernel density estimator, with a

normal kernel and a bandwidth determined by Silverman’s rule of thumb (a value of 0.0255

for our data).
3
Using a change of variables, we convert this estimated residual density to an

estimate of the bid density:

ĥ
(n)
j

(b) =
1

b
(n) · qe,(n)

· ĝN

 
b

b
(n) · qe,(n)

� x
(n)0
j

µ̂� û
(n)

!

We use the above to calculate ĥ
(n)
j

(b
(n)
i

·qe,(n)
) for each contract n (with number of bidders,

N ) and each bidder i, for each of bidder i’s rivals, indexed by j. Each of the resulting values

are then combined with the estimates of the CDF to form the expression in 1.

Note that the estimates of both Ĥ
(n)
j

(b) and ĥ
(n)
j

(b) make use of bidder- and project-

specific information, as they are evaluated at values that depend on the project’s size,

b
(n) · qe,(n)

, rival bidder j’s characteristics x
(n)
j

, and the unobserved project heterogeneity,

û
(n)

. Furthermore, a separate distribution is estimated for each set of N bidders to account

for the fact that, in equilibrium, the distribution of bids will be di↵erent in a 2-firm auction

2
We thank an anonymous referee for reminding us to emphasize that in a first-price auction, the distri-

bution of the mean zero "
(n)
j will vary by the number of bidders in equilibrium. That is, there is a separate

empirical distribution for contracts where n=2 (which we estimate using residuals from 266 bids), n=3 (esti-

mated using residuals from 552 bids), n=4 (671 bids), n=5 (639 bids), n=6 (444 bids), n=7 (448 bids), n=8

(200 bids), n=9 (180 bids), n>=10 (261 bids). We pool contracts with over 10 bidders as there are a limited

number of contracts with such large sets of bidders.
3
Varying this bandwidth slightly did not significantly alter the results.

5
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as compared to a 5-firm auction, since bidders know the number of participants at the time

of bidding. These estimated distributions are reasonably precise, drawing upon anywhere

from 180 to 671 observed bids. The Matlab code to construct these estimates is available as

a supplement to this online appendix.

Step 2: GMM Estimation of the First-Order Conditions

We use the estimates from Step 1 to construct

 
P
j 6=i

ĥ
(n)
j (b

(n)
i ·qe,(n))

1�Ĥ
(n)
j (b

(n)
i ·qe,(n))

!�1

. This term is

found in the bidder’s first-order condition given in equation (10) of the paper. Following

that equation, we can construct the composite error, ee(n)
i

, as:

ee(n)
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1

b
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5

where we parameterize P (b
i(n)

) as

P (b
i(n)

) = �

TX

t=1

�
b
i

t � bt

�2
����
q
e
t � q

a
t

q
e
t

����

We form the moment condition

mN (�, ⌧a+, ⌧a�, ⌧d, ⌧x, ĥ, Ĥ) =
1

N

X

n

X

i

ee(n)
i

(�, ⌧a+, ⌧a�, ⌧d, ⌧x, ĥ, Ĥ)(z
(n)
i

� z
(n)
i

)

where the instruments, z
(n)
i

include the engineer’s estimate, a full set of dummy variables for

the resident engineer assigned to the project, and (in some specifications) month and dis-

trict dummy variables. We use a non-linear least squares optimization algorithm (Matlab’s

lsqnonlin) to minimize the objective functionm
0
N
WmN , whereW is a positive semi-definite

weighting matrix. We first estimate (b�,d⌧a+,d⌧a�, b⌧d, b⌧x) using the identity weighting matrix,

then use those estimates to construct the optimal weighting matrix as the inverse of the

sample variance of mN .
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Table A6: Structural Estimation, using Alternative Specifications for the First-Stage Recovery of the Bid Distributions 
  I-A I-B II-A II-B III-A III-B IV-A IV-B 
Implied Marginal Transaction Costs 
Positive Adjustments  (τA+) 4.759 2.203 4.192 2.224 4.523 2.132 4.557 2.236 

(4.032) (0.409) (2.121) (0.373) (4.015) (0.401) (2.113) (0.379) 
Negative Adjustments  (τA+) -0.994 0.305 -15.145 4.802 -0.268 0.743 -1.863 2.758 

(53.680) (3.156) (33.565) (4.323) (53.686) (3.08) (33.572) (3.015) 
Extra Work  (τX) * 1.091 1.084 2.449 1.233 1.079 1.076 2.209 1.227 

(2.708) (0.152) (1.470) (0.203) (2.708) (0.154) (1.469) (0.198) 
Deductions (τD) 9.069 0.556 10.574 2.881 7.200 0.033 4.246 1.478 

(77.845) (4.878) (39.989) (3.860) (77.904) (4.844) (40.035) (3.601) 
              
Skewing Parameter 
Penalty (σ) -4.699E-05 -1.225E-05 -4.235E-05 -1.309E-05 -4.35E-05 -1.11E-05 -4.84E-05 -1.22E-05 
 (5.69E-05) (1.00E-05) (3.38E-05) (9.10E-06) (5.56E-05) (9.49E-06) (3.31E-05) (1.04E-05) 

              

Number of Obs 3661 3661 3661 3661 3661 3661 3661 3661 
First-Stage Bid Distribution** Contract 

Fixed 
Effects 

Contract 
Fixed 

Effects 

Contract 
Fixed 

Effects 

Contract 
Fixed 

Effects 

Contract 
Random 
Effects 

Contract 
Random 
Effects 

Contract 
Random 
Effects 

Contract 
Random 
Effects 

Weighting Matrix*** Identity Optimal Identity Optimal Identity Optimal Identity Optimal 
Instruments Used in Second Stage 
GMM 

 Resident 
Engineer, 
Engineer’s 
Estimate 

 Resident 
Engineer, 
Engineer’s 
Estimate, 

Month and 
District 

Dummies 

 Resident 
Engineer, 
Engineer’s 
Estimate 

 Resident 
Engineer, 
Engineer’s 
Estimate, 

Month and 
District 

Dummies 
           

* These estimates represent an upper bound on transaction costs associated with changes in scope.  They do not account for marginal costs associated with performing the 
extra work, which for a reasonable profit margin of 20 percent would lower our estimate by $0.80. 
** To recover the bid distribution from which the moment conditions (based on the first-order conditions) are formed, we obtain residuals from a first stage regression of bids 
on contract and bidder characteristics.  This “homogenizes” the data by controlling for contract- and bidder-specific characteristics. In Columns I-A, I-B, II-A, and II-B, the 
first-stage regression includes bidder distance, fringe status, and a contract fixed effect.  In Columns III-A, III-B, IV-A, and IV-B, the first-stage regression includes bidder 
distance, fringe status, the number of bidders, and a contract random effect (the fixed effect approach did not include the number of bidders as it would have been fully 
absorbed by the fixed effect.  In both cases, the residuals for all 3661 bids (819 contracts) were then pooled in order to recover the bidding distribution from which bidders 
would form their expectations of winning.  This differs from the approach in the paper – where separate distributions are recovered for each set of contracts with the same 
number of bidders – but the resulting estimates are very similar.  We prefer the indexing approach used in the paper, as it trades off a higher variance (fewer observations used 
to construct each distribution) in favor of unbiasedness. 
*** Consistent GMM estimates were computed using the identity matrix as the weighting matrix. In a second step, efficient GMM estimates were computed using the optimal 
weighting matrix derived from the variance of the sample moments in the first step. Standard errors appear in parentheses. 
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